2023-2024学年河南省宝丰市数学九上期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为( )
A.8B.6C.D.
2.已知x2+y=3,当1≤x≤2时,y的最小值是( )
A.-1B.2C.2.75D.3
3.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为( )
A.30°B.40°C.45°D.50°
4.的值为( )
A.2B.C.D.
5.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
根据列表,可以估计出m的值是( )
A.8B.16C.24D.32
6.若,则下列各式一定成立的是( )
A.B.C.D.
7.能判断一个平行四边形是矩形的条件是( )
A.两条对角线互相平分B.一组邻边相等
C.两条对角线互相垂直D.两条对角线相等
8.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是( )
A.B.
C.D.
9.如图是某体育馆内的颁奖台,其左视图是( )
A.B.
C.D.
10.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是( )
A.n(n﹣1)=15B.n(n+1)=15
C.n(n﹣1)=30D.n(n+1)=30
二、填空题(每小题3分,共24分)
11.若抛物线的顶点在坐标轴上,则b的值为________.
12.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab= .
13.如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.
14.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_______.
15.如图,在⊙O中,,AB=3,则AC=_____.
16.方程的根为 .
17.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为 .
18.如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_________.
三、解答题(共66分)
19.(10分)如图,为的直径,点为延长线上的一点,过点作的切线,切点为,过两点分别作的垂线,垂足分别为,连接.
求证:(1)平分;
(2)若,求的长.
20.(6分)如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.
(1)求b和c的值;
(2)点P是直线AC下方的抛物线上的一动点,连结PA,PB.求△PAB的最大面积及点P到直线AC的最大距离;
(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.
21.(6分)为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
22.(8分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;
(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.
23.(8分)如图,抛物线与轴交于,两点.
(1)求该抛物线的解析式;
(2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.
(3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.
24.(8分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
其中,________________.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;
(3)观察函数图像,写出两条函数的性质;
(4)进一步探究函数图像发现:
①方程有______个实数根;
②函数图像与直线有_______个交点,所以对应方程有_____个实数根;
③关于的方程有个实数根,的取值范围是___________.
25.(10分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了_______名学生;
(2)请将两个统计图补充完整;
(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.
26.(10分)如图,平面直角坐标中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC).
(1)求A、C的坐标.
(2)直接写出点E的坐标,并求出过点A、E的直线函数关系式.
(3)点F是x轴上一点,在坐标平面内是否存在点P,使以点O、B、P、F为顶点的四边形为菱形?若存在请直接写出P点坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、A
4、D
5、C
6、B
7、D
8、B
9、D
10、C
二、填空题(每小题3分,共24分)
11、±1或0
12、
13、
14、1
15、1.
16、.
17、100
18、4
三、解答题(共66分)
19、(1)见解析;(2)
20、(1)b=,c=﹣;(2),;(3)点Q的坐标为:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).
21、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.
22、(1)见解析;(2)
23、(1)y=x2﹣2x﹣1;(2)存在;M(1,﹣2);(1)(1+2,4)或(1﹣2 ,4)或(1,﹣4).
24、(1)-1;(2)见解析;(1)函数的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①2;②1,1;③-4<a<-1
25、 (1)200;(2)答案见解析;(3)240人.
26、(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)满足条件的点P坐标为(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
49
425
1722
3208
16698
33329
河南省舞钢市2023-2024学年数学九上期末学业质量监测试题含答案: 这是一份河南省舞钢市2023-2024学年数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,的值为等内容,欢迎下载使用。
河南省洛阳市偃师市2023-2024学年数学九上期末学业质量监测试题含答案: 这是一份河南省洛阳市偃师市2023-2024学年数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年河南省许昌市名校数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年河南省许昌市名校数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,《孙子算经》中有一道题等内容,欢迎下载使用。