2023-2024学年江苏省镇江市润州区九年级数学第一学期期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,矩形ABCD是由三个全等矩形拼成的,AC与DE、EF、FG、HG、HB分别交于点P、Q、K、M、N,设△EPQ、△GKM、△BNC的面积依次为S1、S2、S1.若S1+S1=10,则S2的值为( ).
A.6B.8
C.10D.12
2.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为( )
A.B.C.D.
3.下列命题是真命题的是( )
A.如果a+b=0,那么a=b=0B.的平方根是±4
C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等
4.如图,为的直径,为上一点,弦平分,交于点,,,则的长为( )
A.2.2B.2.5C.2D.1.8
5.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
A.第一象限B.第二象限C.第三象限D.第四象限
6.下列式子中,y是x的反比例函数的是( )
A.B.C.D.
7.如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是( )
A.B.
C.或D.或
8.如图为二次函数的图象,在下列说法中:
①;②方程的根是③ ;④当时,随的增大而增大;⑤;⑥,正确的说法有( )
A.B.C.D.
9.如图,抛物线=与轴交于点,其对称轴为直线,结合图象分析下列结论:
① ; ② ;
③ >0; ④当时,随的增大而增大;
⑤ ≤(m为实数),其中正确的结论有( )
A.2个B.3个C.4个D.5个
10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为
A.9B.6C.4D.3
二、填空题(每小题3分,共24分)
11.把抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.
12.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.
13.在Rt△ABC中,∠C=90,AB=4,BC=3,则sinA的值是______________.
14.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
15.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.
16.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x步,那么根据题意列出的方程为_____.
17.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).
18.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.
三、解答题(共66分)
19.(10分)已知与成反比例,当时,,求与的函数表达式.
20.(6分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.
(1)画树状图或列表求出各人获胜的概率。
(2)这个游戏公平吗?说说你的理由
21.(6分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.
(1)用含x的代数式表示DF= ;
(1)x为何值时,区域③的面积为180平方米;
(3)x为何值时,区域③的面积最大?最大面积是多少?
22.(8分)如图,射线交一圆于点,,射线交该圆于点,,且 .
(1)判断与的数量关系.(不必证明)
(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.
23.(8分)某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.
(1)求∠CAE的度数;
(2)求AE的长(结果保留根号);
(3)求建筑物AO的高度(精确到个位,参考数据:,).
24.(8分)如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.
(1)求项点B的坐标并求出这条抛物线的解析式;
(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;
(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.
25.(10分)如图,在中,分别是的中点,,连接交于点.
(1)求证:;
(2)过点作于点,交于点,若,求的长.
26.(10分)如图,平面直角坐标系中,A、B、C坐标分别是(-4,0)、(-4,-1)、(-1,1).
(1)将△ABC绕点O逆时针方向旋转90°后得△A1B1C1,画出△A1B1C1;
(1)写出A1、B1、C1的坐标;
(3)画出△ABC关于点O的中心对称图形△A1B1C1.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、A
5、A
6、C
7、D
8、D
9、B
10、D
二、填空题(每小题3分,共24分)
11、
12、y=(x+2)2-1
13、
14、
15、a>或a<.
16、x(x﹣12)=1
17、=
18、
三、解答题(共66分)
19、
20、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析
21、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米
22、(1)AC=AE;(2)图见解析,证明见解析
23、(1)45°;(2);(3)29.
24、(1)点B坐标为(1,2),y=﹣x2+x+;(2)S=﹣m2+2m+,S最大值;(3)点Q的坐标为(﹣,).
25、(1)见解析;(2)AN的长为2.
26、(1)画图形见解析;(1),,;(3)画图形见解析
江苏省镇江市润州区2023-2024学年九年级数学第一学期期末联考试题含答案: 这是一份江苏省镇江市润州区2023-2024学年九年级数学第一学期期末联考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知抛物线的解析式为y=.等内容,欢迎下载使用。
2023-2024学年江苏省镇江市九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省镇江市九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了若一次函数y=ax+b,若,设,,,则、、的大小顺序为等内容,欢迎下载使用。
江苏省镇江市镇江中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案: 这是一份江苏省镇江市镇江中学2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,如图,是的直径,、是弧等内容,欢迎下载使用。