2023-2024学年江苏省张家港市第一中学数学九年级第一学期期末调研模拟试题含答案
展开
这是一份2023-2024学年江苏省张家港市第一中学数学九年级第一学期期末调研模拟试题含答案,共8页。试卷主要包含了下列方程是一元二次方程的是,校园内有一个由两个全等的六边形,抛物线的顶点坐标为,下列命题中,为真命题的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.二次函数的图象与轴有且只有一个交点,则的值为( )
A.1或-3B.5或-3C.-5或3D.-1或3
2.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网B.球会过球网但不会出界
C.球会过球网并会出界D.无法确定
3.下列方程是一元二次方程的是( )
A.B.x2=0C.x2-2y=1D.
4.校园内有一个由两个全等的六边形(边长为)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为( )
A.B.C.D.
5.已知反比例函数,下列各点在此函数图象上的是( )
A.(3,4)B.(-2,6)C.(-2,-6)D.(-3,-4)
6.抛物线的顶点坐标为( )
A.B.C.D.
7.如图,在5×6的方格纸中,画有格点△EFG,下列选项中的格点,与E,G两点构成的三角形中和△EFG相似的是( )
A.点AB.点BC.点CD.点D
8.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,::25,则DE:=( )
A.2:5B.3:2C.2:3D.5:3
9.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是( )
A.点数之和等于1B.点数之和等于9
C.点数之和大于1D.点数之和大于12
10.下列命题中,为真命题的是( )
A.同位角相等B.相等的两个角互为对顶角
C.若a2=b2,则a=bD.若a>b,则﹣2a<﹣2b
二、填空题(每小题3分,共24分)
11.计算sin60°cs60°的值为_____.
12.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.
13.某数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1m的竹竿的影长为0.5m,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,其中,落在墙壁上的影长为0.8m,落在地面上的影长为4.4m,则树的高为_______m.
14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.
15.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.
16.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.
17.已知x=﹣1是方程x2﹣2mx﹣3=0的一个根,则该方程的另一个根为_____.
18.已知抛物线与轴的一个交点坐标为,则一元二次方程的根为______________.
三、解答题(共66分)
19.(10分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)
20.(6分)如图,在正方形中,点是的中点,连接,过点作交于点,交于点.
(1)证明:;
(2)连接,证明:.
21.(6分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.
(1)求证:△BDC∽△ABC;
(2)如果BC=, AC=3,求CD的长.
22.(8分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a,b),其中第一枚骰子的点数记为a,第二枚骰子的点数记为b.
(1)用列举法或树状图法求(a,b)的结果有多少种?
(2)求方程x2+bx+a=0有实数解的概率.
23.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
24.(8分)在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.
25.(10分)探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)
.
26.(10分)用适当的方法解方程:
(1)
(2).
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、C
5、B
6、D
7、D
8、B
9、B
10、D
二、填空题(每小题3分,共24分)
11、
12、或
13、9.2
14、20
15、1
16、或
17、1
18、,
三、解答题(共66分)
19、28.3海里
20、(1)见解析;(2)见解析.
21、(1)详见解析;(1)CD=1.
22、(1)一共有16种结果;(2).
23、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.
24、两次摸到的球都是红球的概率为.
25、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶当∠B与∠D互补时,可使得DE+BF=EF.
26、(1);;(2)=,=1.
相关试卷
这是一份2023-2024学年海北市重点中学数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年江苏省高邮市南海中学数学九年级第一学期期末调研试题含答案,共8页。
这是一份2023-2024学年江苏省盐城市盐城中学数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了如图,已知点A等内容,欢迎下载使用。