2023-2024学年江苏省兴化市顾庄区数学九上期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是( )
A.B.
C.D.
2.设抛物线的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 ( )
A.B.
C.D. (a为任意常数)
3.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )
A.B.C.D.
4.如图,⊙O的半径为2,点A的坐标为,直线AB为⊙O的切线,B为切点,则B点的坐标为( )
A.B.C.D.
5.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是( )
A.B.C.D.
6.若抛物线y=x2-2x-1与x轴的一个交点坐标为(m,0),则代数式2m2-4m+2017的值为( )
A.2019B.2018C.2017D.2015
7.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为( )
A.2B.C.2D.4
9.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有( )
A.①②③B.②③④C.①②④D.①③④
10.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )
A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件
C.事件①和②都是随机事件D.事件①和②都是必然事件
二、填空题(每小题3分,共24分)
11.二次函数y=(x﹣1)2﹣5的顶点坐标是_____.
12.如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,使AB′恰好经过点C,连接BB′,则∠BAC′的度数为_____°.
13.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.
14.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.
15.二次函数图象的开口向__________.
16.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
17.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.
18.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
三、解答题(共66分)
19.(10分)如图,已知,是的中点,过点作.求证:与相切.
20.(6分)已知:如图,,点在射线上.
求作:正方形,使线段为正方形的一条边,且点在内部.
21.(6分)已知抛物线y=x2+x﹣.
(1)用配方法求出它的顶点坐标和对称轴;
(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.
22.(8分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.
(1)求k的值;
(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;
(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.
23.(8分)如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.
(1)求抛物线的解析式;
(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;
(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.
24.(8分)实验探究:
如图,和是有公共顶点的等腰直角三角形,,交于、点.
(问题发现)
(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;
(类比探究)
(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;
(拓展延伸)
(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.
25.(10分)计算:
(1)sin260°﹣tan30°•cs30°+tan45°
(2)cs245°+sin245°+sin254°+cs254°
26.(10分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
(1)求反比例函数和一次函数的表达式;
(2)直接写出关于的不等式的解集.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、B
4、D
5、C
6、A
7、A
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、(1,﹣5)
12、1
13、
14、
15、下
16、﹣2
17、4
18、
三、解答题(共66分)
19、详见解析.
20、见详解
21、(1)顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)AB=.
22、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).
23、(1);(2);(3)点的坐标为或
24、(1)相等;(2)或;(3)1.
25、(1);(2)2.
26、(1)y=-.y=x-1.(1)x<2.
江苏省兴化市顾庄区2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案: 这是一份江苏省兴化市顾庄区2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了如图所示的工件,其俯视图是,方程的根的情况是,下列方程中没有实数根的是等内容,欢迎下载使用。
2023-2024学年江苏省兴化市顾庄区四校九上数学期末学业质量监测模拟试题含答案: 这是一份2023-2024学年江苏省兴化市顾庄区四校九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了抛物线y=的对称轴方程为,下列事件是必然事件的是等内容,欢迎下载使用。
2023-2024学年江苏省兴化市顾庄区三校数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省兴化市顾庄区三校数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,下图中,不是中心对称图形的是等内容,欢迎下载使用。