黑龙江省鸡西市名校2023-2024学年数学九上期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.方程的解是( )
A.B.C.D.
2.如图,为的直径,点为上一点,,则劣弧的长度为( )
A.B.
C.D.
3.在反比例函数的图象中,阴影部分的面积不等于4的是( )
A.B.C.D.
4.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:
①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.
其中正确的个数是( )
A.2B.3C.4D.5
5.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m的取值范围是( )
A.m<0B.m>0C.m<D.m>
6.已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3,4三个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Qn(2≤n≤9,n为整数),则当Qn的概率最大时,n的所有可能的值为( )
A.5B.4或5C.5或6D.6或7
7.设,,是抛物线上的三点,则的大小关系为( )
A.B.C.D.
8.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为( )
A.105°B.115°C.125°D.135°
9.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.B.C.D.
10.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是( )
A.8或6B.10或8C.10D.8
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为 .
12.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .
13.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.
14.如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y=(x>0)的图象上,若▱ABCD的面积为4,则k的值为:_____.
15.计算:=______.
16.如图,四边形是的内接四边形,且,点在的延长线上,若,则的半径_________________.
17.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.
18.已知线段是线段和的比例中项,且、的长度分别为2和8,则的长度为_________.
三、解答题(共66分)
19.(10分)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD;
(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.
20.(6分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
21.(6分)如图,为了测量山脚到塔顶的高度(即的长),某同学在山脚处用测角仪测得塔顶的仰角为,再沿坡度为的小山坡前进400米到达点,在处测得塔顶的仰角为.
(1)求坡面的铅垂高度(即的长);
(2)求的长.(结果保留根号,测角仪的高度忽略不计).
22.(8分)某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.
(1)求y与x之间的函数关系;
(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?
23.(8分)如图,,平分,且交于点,平分,且交于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
24.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.
(1)求该抛物线的解析式,并用配方法把解析式化为的形式;
(2)若点在上,连接,求的面积;
(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?
25.(10分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:
(1)a的值为 ;
(2)求C等级对应扇形的圆心角的度数;
(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.
26.(10分)解方程:x2+2x=1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、B
4、C
5、D
6、C
7、D
8、D
9、C
10、B
二、填空题(每小题3分,共24分)
11、
12、.
13、15π.
14、2
15、
16、
17、
18、4
三、解答题(共66分)
19、依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.
20、(1)证明见解析;(2)MD长为1.
21、(1)200;(2).
22、(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为1元
23、(1)证明见解析;(2)
24、(1);(2);(3)
25、(1)8 ;(2);(3)
26、x1=﹣1+,x2=﹣1﹣
黑龙江省鸡西市虎林市八五八农场学校2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份黑龙江省鸡西市虎林市八五八农场学校2023-2024学年数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了关于抛物线的说法中,正确的是,的值等于等内容,欢迎下载使用。
2023-2024学年黑龙江省鸡西市二中数学九上期末质量检测模拟试题含答案: 这是一份2023-2024学年黑龙江省鸡西市二中数学九上期末质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件是必然事件的是,方程的解是等内容,欢迎下载使用。
2023-2024学年黑龙江省大兴安岭地区名校九上数学期末检测试题含答案: 这是一份2023-2024学年黑龙江省大兴安岭地区名校九上数学期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,正六边形内接于,连接,下列哪个方程是一元二次方程等内容,欢迎下载使用。