专项17.8 勾股定理之垂美四边形模型 2024年鲁教版(五四制)九年级数学专题培训
展开
这是一份专项17.8 勾股定理之垂美四边形模型 2024年鲁教版(五四制)九年级数学专题培训,共6页。试卷主要包含了定义等内容,欢迎下载使用。
A.SE=6B.SF=3C.SM=3SFD.SM=4SC
2.如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是( )
A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2
3.由四个正方形相框拼成的照片墙如图1所示,图2是其平面几何图,其中正方形ABCD,正方形DEFG,正方形BIJK的面积分别为4分米2,4分米2,16分米2,则正方形AGHI的面积为( )
A.5分米2B.6分米2C.6.25分米2D.8分米2
4.(2022秋·福建宁德·八年级校考阶段练习)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,,则AB2+CD2=________.
5.已知点P是矩形ABCD内的一点,且PA=2,PB=3,PC=4,则PD= .
6.(2023春·浙江湖州·八年级统考期末)定义:对角线垂直的四边形叫做“对垂四边形”.如图,在“对垂四边形”中,对角线与交于点O,.若点E、F、G、H分别是边、、、的中点,且四边形是“对垂四边形”,则四边形的面积是 .
7.(2022春·山东聊城·八年级校考期中)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;
(2)性质探究:经探究发现,垂美四边形ABCD两组对边AB,CD与BC,AD之间有这样的数量关系:AB2+CD2=AD2+BC2,请写出证明过程;(先画出图形,写出已知,求证)
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG和GE.已知AC=4,AB=5,求GE长.
8.(★★★★★)数学活动∶图形的变化
问题情境∶如图1,△ABC为等腰直角三角形,∠ACB=90º,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接 BE,AD.猜想线段 BE,AD 之间的关系.
(1)独立思考∶请直接写出线段 BE,AD 之间的关系.
(2)合作交流∶“希望”小组受上述问题的启发,将图1中的等腰直角△ECD绕着点C顺时针方向旋转至如图2的位置,BE交AC于点H,交AD于点O.
(1)中的结论是否仍然成立?请说明理由.
(3)拓展延伸∶“科技”小组将⑵中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为 Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想 BD²+AE²是否为定值,结合图3说明理由.
9.(2023·广东九年级课时练习)小明学习了特殊的四边形后,对特殊四边形的探究产生了兴趣,发现另外一类特殊四边形,如图1,我们把两条对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是______.
(2)性质探究:通过探究,直接写出垂美四边形ABCD的面积S与两条对角线AC、BD之间的数量关系:______.
(3)问题解决:如图2,分别以的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BG、CE交于点N,CE交AB于点M,连结GE.①求证:四边形BCGE为垂美四边形;
②已知,,则四边形BCGE的面积为______.
10.如图,我把对角线互相垂直的四边形叫做“垂美四边形”.
(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.
(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如图2,当∠ACB=90°,连接PQ,求PQ;
②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=2,则S△ABC= .
11.(2023春·江西赣州·八年级统考期末)如图,我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图,在四边形中,,,问四边形是垂美四边形吗?请说明理由.
(2)性质探究:试探究垂美四边形两组对边,与,之间的数量关系,写出证明过程(先画出图形)
(3)问题解决:如图,分别以的直角边和斜边为边向外作正方形和正方形,连接,,已知,,求的长.
12(2023春•越秀区校级期中)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:给出下列图形:①平行四边形;②矩形;③菱形;④正方形.其中一定是“垂美四边形”的是 (填序号);
(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.求证:AB2+CD2=AD2+BC2;
(3)解决问题:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE.已知AC=,AB=3.
①请问四边形CGEB是垂美四边形吗?并说明理由;
②求GE的长.
相关试卷
这是一份中考数学专题练习10 三角形中的重要模型-垂美四边形与378、578模型,文件包含中考数学10三角形中的重要模型-垂美四边形与378578模型教师版专题训练docx、中考数学10三角形中的重要模型-垂美四边形与378578模型学生版专题训练docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份模型35 垂美四边形模型(原卷版),共14页。
这是一份2024年中考数学压轴题专项练习—垂美四边形模型,文件包含49垂美四边形模型答案docx、49垂美四边形模型docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。