河北省石家庄市第二十三中学2023-2024学年数学八年级第一学期期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.现有甲,乙两个工程队分别同时开挖两条 600 m 长的隧道,所挖遂道长度 y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是( )
A.甲队每天挖 100 m
B.乙队开挖两天后,每天挖50米
C.甲队比乙队提前2天完成任务
D.当时,甲、乙两队所挖管道长度相同
2.已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为( )
A.2B.6C.8D.2或8
3.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是( )
A.1个B.2个C.3个D.4个
4.若分式有意义,则实数x的取值范围是( )
A.x=0B.x=5C.x≠5D.x≠0
5.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是( )
A.AD=AEB.BD=CEC.∠B=∠CD.BE=CD
6.以下轴对称图形中,对称轴条数最少的是( )
A.B.
C.D.
7.已知则的值为:
A.1.5B.C.D.
8.如图等边△ABC边长为1cm,D、E分别是AB、AC上两点,将△ADE沿直线DE折叠,点A落在处,A在△ABC外,则阴影部分图形周长为( )
A.1cmB.1.5cmC.2cmD.3cm
9.如图,三点在边长为1的正方形网格的格点上,则的度数为( )
A.B.C.D.
10.的平方根是( )
A.±16B.C.±2D.
11.已知,,则与的大小关系为( )
A.B.C.D.不能确定
12.下列图形是中心对称图形的是( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
14.如图,四边形中,,,则的面积为__________.
15.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a+b的值为_____.
16.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.
17.因式分解:16x2﹣25=______.
18.计算:__________________.
三、解答题(共78分)
19.(8分)在计算的值时,小亮的解题过程如下:
解:原式
①
②
③
④
(1)老师认为小亮的解法有错,请你指出:小亮是从第_________步开始出错的;
(2)请你给出正确的解题过程.
20.(8分)如图,在和中,、、、在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.
①;②;③;④
解:我写的真命题是:
在和中,已知:___________________.
求证:_______________.(不能只填序号)
证明如下:
21.(8分)如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)
(1)写出k、b满足的关系;
(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;
(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.
22.(10分)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?
23.(10分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).
(1)求直线BC的函数解析式;
(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;
(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;
(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.
24.(10分)如图,等腰直角三角形中,,,点坐标为,点坐标为,且 ,满足.
(1)写出、两点坐标;
(2)求点坐标;
(3)如图,,为上一点,且,请写出线段的数量关系,并说明理由.
25.(12分)如图,在中,,,平分,且,连接、
(1)求证:;
(2)求的度数
26.(12分)如图,∠AFD=∠1,AC∥DE,
(1)试说明:DF∥BC;
(2)若∠1=68°,DF平分∠ADE,求∠B的度数.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、A
4、C
5、D
6、D
7、B
8、D
9、B
10、B
11、A
12、B
二、填空题(每题4分,共24分)
13、3或1
14、10
15、1
16、小李.
17、(4x+5)(4x﹣5)
18、x1-y1
三、解答题(共78分)
19、(1)③;(2)答案见解析.
20、已知:B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明见解析;或已知:B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明见解析(任选其一即可)
21、(1)k+b=3;(2)y=﹣x+4;(3)点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).
22、调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元.
23、(1);(2);(3)或 ;(4) t最小值为秒
24、(1)点A的坐标为,点C的坐标为;(2)点B的坐标为(2,4);(3)MN= CN+AM,理由见解析
25、(1)详见解析;(2)
26、(1)证明见解析;(2)68°.
河北省石家庄市新华区2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份河北省石家庄市新华区2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
河北省石家庄市第四十一中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份河北省石家庄市第四十一中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,方程的根是等内容,欢迎下载使用。
2023-2024学年河北省石家庄市裕华区第四十中学九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份2023-2024学年河北省石家庄市裕华区第四十中学九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了两三角形的相似比是2等内容,欢迎下载使用。