2023-2024学年上海市金山区名校八上数学期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )
A.①,②B.①,④C.③,④D.②,③
2.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是( )
A.y=60-2x(0
A.x﹣y=4B.x+y=4C.3x﹣y=8D.x+2y=﹣1
4.某种产品的原料提价,因而厂家决定对产品进行提价,现有种方案:①第一次提价,第二次提价;②第一次提价,第二次提价;③第一次、第二次提价均为.其中和是不相等的正数.下列说法正确的是( )
A.方案①提价最多B.方案②提价最多
C.方案③提价最多D.三种方案提价一样多
5.在平面直角坐标系中,点的位置所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
6.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A.B.
C.D.
7.如图,△ABC中,AB=AC,DE是AB的垂直平分线,分别交AB、AC于E、D两点,若∠BAC=40°,则∠DBC等于( )
A.30°B.40°C.70°D.20°
8.下列命题中,是假命题的是( )
A.如果一个等腰三角形有两边长分别是1,3,那么三角形的周长为7
B.等腰三角形的高、角平分线和中线一定重合
C.两个全等三角形的面积一定相等
D.有两条边对应相等的两个直角三角形一定全等
9.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 ( )
A.相等B.不相等C.互余或相等D.互补或相等
10.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有( )个.
A.4B.3C.2D.1
11.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有( )个.
A.5B.6C.7D.8
12.下列各数中,是无理数的是( )
A.B.C.0D.
二、填空题(每题4分,共24分)
13.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
14.分式有意义时,x的取值范围是_____.
15.如图,在平面直角坐标系中,点的坐标为,点为轴上一动点,以为边在的右侧作等腰,,连接,则的最小值是 __________.
16.游泳者在河中逆流而上,于桥A下面将水壶遗失被水冲走,继续前游30分钟后他发现水壶遗失,于是立即返回追寻水壶,在桥A下游距桥1.2公里的桥B下面追到了水壶,那么该河水流的速度是_________.
17.我县属一小为了师生继承瑶族非物质文化遗产的长鼓舞,决定购买一批相关的长鼓.据了解,中长鼓的单价比小长鼓的单价多20元,用10 000元购买中长鼓与用8 000元购买小长鼓的数量相同,则中长鼓为_______元,小长鼓的单价为_______元.
18.64的立方根是_______.
三、解答题(共78分)
19.(8分)已知,求,的值.
20.(8分)已知某种商品去年售价为每件元,可售出件.今年涨价成(成),则售出的数量减少成(是正数).
试问:如果涨价成价格,营业额将达到,求.
21.(8分)甲、乙两人同时从相距千米的地匀速前往地,甲乘汽车,乙骑电动车,甲到达地停留半个小时后按原速返回地,如图是他们与地之间的距离(千米)与经过的时间(小时)之间的函数图像.
(1) ,并写出它的实际意义 ;
(2)求甲从地返回地的过程中与之间的函数表达式,并写出自变量的取值范围;
(3)已知乙骑电动车的速度为千米/小时,求乙出发后多少小时与甲相遇?
22.(10分)(新知理解)
如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.
作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.
(解决问题)
如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为 cm;
(拓展研究)
如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)
23.(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?
24.(10分)新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:
设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围
用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.
25.(12分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.
26.(12分)如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.
(1)若∠AED=10°,则∠DEC= 度;
(1)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;
(3)如图1,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH1+CH1=1AE1.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、A
4、C
5、B
6、C
7、A
8、B
9、D
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、六
14、x>1.
15、3.
16、0.01km/min
17、100 ; 1
18、4.
三、解答题(共78分)
19、2,2
20、
21、(1)2.5;甲从A地到B地,再由B地返回到A地一共用了2.5小时;(2)y=-90x+225(1.5≤x≤2.5);(3)1.8小时.
22、(1);(2)作图见解析.
23、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台
24、 (1);(2)见解析.
25、(1)证明见解析;(2)15,26,37,48,59;(3).
26、(1)45度;(1)∠AEC﹣∠AED=45°,理由见解析;(3)见解析
苹果
芦柑
香梨
每辆汽车载货量吨
7
6
5
每车水果获利元
2500
3000
2000
2023-2024学年上海市金山区名校九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年上海市金山区名校九年级数学第一学期期末质量跟踪监视试题含答案,共8页。
贵州省贵阳市名校2023-2024学年八上数学期末质量跟踪监视试题含答案: 这是一份贵州省贵阳市名校2023-2024学年八上数学期末质量跟踪监视试题含答案,共8页。
山东省青岛市名校2023-2024学年八上数学期末质量跟踪监视试题含答案: 这是一份山东省青岛市名校2023-2024学年八上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了已知点A的坐标为,下列各式不能分解因式的是等内容,欢迎下载使用。