天津市塘沽区名校2023-2024学年八上数学期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点的坐标可表示为(1,2,5),点的坐标可表示为(4,1,3),按此方法,则点的坐标可表示为( )
A.B.C.D.
2.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离(米)与离家时间(分钟)之间的函数关系.下列说法中正确的个数是( )
(1)修车时间为15分钟;
(2)学校离家的距离为4000米;
(3)到达学校时共用时间为20分钟;
(4)自行车发生故障时离家距离为2000米.
A.1个B.2个C.3个D.4个
3.下列图形具有两条对称轴的是( )
A.等边三角形B.平行四边形C.矩形D.正方形
4.下列图形中,中心对称图形是( )
A.B.C.D.
5.若,,则的值是( )
A.2B.5C.20D.50
6.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是( )
A.∠B=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′
7.如图,在中国象棋棋盘中,如果将“卒”的位置记作,那么“相”的位置可记作( )
A.B.C.D.
8.如果分式有意义,则x的取值范围是( )
A.x<﹣3B.x>﹣3C.x≠﹣3D.x=﹣3
9.判断以下各组线段为边作三角形,可以构成直角三角形的是( )
A.6,15,17B.7,12,15C.13,15,20D.7,24,25
10.如图,在中,,,,则的度数为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.分解因式:= .
12.在中,°,,,某线段, ,两点分别在和的垂线上移动,则当__________.时,才能使和全等.
13.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.
①AE=CF,
②AP=EF,
③△EPF是等腰直角三角形,
④四边形AEPF的面积是△ABC面积的一半.
14.一个多边形的内角比四边形内角和多,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是__________.
15.如图, 在△ABC中, ∠ACB=81°, DE垂直平分AC, 交AB于点D,交AC于点E.若CD=BC, 则∠A等于_____度.
16.若分式有意义,则的取值范围是_______________.
17.当________时,二次根式有意义.
18.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了_____m.
三、解答题(共66分)
19.(10分)如图 1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点 D(-3,8)且与x轴,y轴分别交于C、E.
(1)求出点A坐标,直线l2的解析式;
(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;
(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.
20.(6分)观察下列等式: ;;;……
根据上面等式反映的规律,解答下列问题:
(1)请根据上述等式的特征,在括号内填上同一个实数: ( )-5=( );
(2)小明将上述等式的特征用字母表示为:(、为任意实数).
①小明和同学讨论后发现:、的取值范围不能是任意实数.请你直接写出、不能取哪些实数.
②是否存在、两个实数都是整数的情况?若存在,请求出、的值;若不存在,请说明理由.
21.(6分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.
(1)求两种球拍每副各多少元?
(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
22.(8分)如图,已知点E,C在线段BF上,BE=CF,∠ABC=∠DEF,AB=DE,
(1)求证:△ABC≌△DEF.
(2)求证:AC∥DF
23.(8分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.
(1)若∠A=∠AOC,试说明:∠B=∠BOC;
(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;
(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
24.(8分)如图,,,垂足分别为E、D,CE,BD相交于.
(1)若,求证:;
(2)若,求证:.
25.(10分)已知:如图,AD垂直平分BC,D为垂足,DM⊥AB,DN⊥AC,M、N分别为垂足.求证:DM=DN.
26.(10分)已知 y 与 x﹣2 成正比例,且当 x =﹣4 时, y =﹣1.
(1)求 y 与 x 的函数关系式;
(2)若点 M(5.1,m)、N(﹣1.9,n)在此函数图像上,判断 m 与 n 的大小关系.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、C
5、A
6、C
7、C
8、C
9、D
10、B
二、填空题(每小题3分,共24分)
11、
12、5㎝或10㎝
13、①③④.
14、
15、1
16、
17、≤3
18、1
三、解答题(共66分)
19、(1)A(5,0),y4x-4;
(2)8秒, P(-1,6);
(3).
20、 (1) ;(2)①x不能取-1,y不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;
21、(1)直拍球拍每副220元,横拍球每副260元;(2)购买直拍球拍30副,则购买横拍球10副时,费用最少.
22、(1)详见解析;(2)详见解析
23、⑴证明解析;(2)30°;(3)∠P的度数不变,∠P=25°.
24、(1)证明见解析;(1)证明见解析.
25、见解析.
26、(2)y=x-2;(2)m>n.
西藏林芝地区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份西藏林芝地区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中,是必然事件的是等内容,欢迎下载使用。
天津市滨湖中学2023-2024学年九上数学期末学业水平测试模拟试题含答案: 这是一份天津市滨湖中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
安徽省阜阳市名校2023-2024学年八上数学期末学业水平测试模拟试题含答案: 这是一份安徽省阜阳市名校2023-2024学年八上数学期末学业水平测试模拟试题含答案,共6页。