江苏省淮安市盱眙县2023-2024学年数学八上期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,点D、E在△ABC的边BC上,△ABD≌△ACE,下列结论不一定成立的是( )
A.B.C.D.
2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠B=∠CB.AD=AEC.BD=CED.BE=CD
3.如图,等腰△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且MN=BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在MN从左至右的运动过程中,△BMD和△CNE的面积之和( )
A.保持不变B.先变小后变大
C.先变大后变小D.一直变大
4.如图,在△ABC中,AB=AC,点D是BC边上的中点,则下列结论中错误的是( )
A.∠BAD=∠CADB.∠BAC=∠BC.∠B=∠CD.AD⊥BC
5.已知关于的分式方程无解,则的值为 ( )
A.B.C.D.
6.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到直线AC的距离为4,则点P到直线AB的距离为( )
A.4B.3C.2D.1
7.下列四个图形中,是轴对称图形的个数是( )
A.1B.2C.3D.4
8.如图是我市某景点6月份内日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温出现的频率是( )
A.3B.0.5C.0.4D.0.3
9.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )
A.8B.10C.12D.14
10.下列说法错误的个数是( )
①所有无限小数都是无理数;②的平方根是;③;④数轴上的点都表示有理数
A.个B.个C.个D.个
二、填空题(每小题3分,共24分)
11.写出点M(﹣2,3)关于x轴对称的点N的坐标_____.
12.若实数、满足,则________.
13.一次函数(,,是常数)的图像如图所示.则关于x的方程的解是_______.
14.中,厘米,厘米,点为的中点,如果点在线段上以2厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动,若点的运动速度为厘米/秒,则当与全等时,的值为______厘米/秒.
15.二元一次方程组的解为_________.
16.如图,在平面直角坐标系中,有一个正三角形,其中,的坐标分别为和.若在无滑动的情况下,将这个正三角形沿着轴向右滚动,则在滚动过程中,这个正三角形的顶点,,中,会过点的是点__________.
17.一种微生物的半径是,用小数把表示出来是_______.
18.如图,一块含有角的直角三角板,外框的一条直角边长为,三角板的外框线和与其平行的内框线之间的距离均为,则图中阴影部分的面积为_______(结果保留根号)
三、解答题(共66分)
19.(10分)潍坊市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录.
问:旺季每间价格为多少元?该酒店豪华间有多少间?
20.(6分)分解因式:
(1);
(2).
21.(6分)如图1,在平面直角坐标系中,已知点,点,为线段上一点,且满足.
(1)求直线的解析式及点的坐标;
(2)如图2,为线段上一动点,连接,与交于点,试探索是否为定值?若是,求出该值;若不是,请说明理由;
(3)点为坐标轴上一点,请直接写出满足为等腰三角形的所有点的坐标.
22.(8分)某工厂准备在春节前生产甲、乙两种型号的新年礼盒共 80 万套,两种礼盒的成本和售价如下表所示;
(1)该工厂计划筹资金 2150 万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?
(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒万套,增加生产乙种礼盒万套(,都为正整数),且两种礼盒售完后所获得的总利润恰为 690 万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.
(3)在(2)的情况下,设实际生产的两种礼盒的总成本为万元,请写出与的函数关系式,并求出当 为多少时成本有最小值,并求出成本的最小值为多少万元?
23.(8分)王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.
(1)求证:;
(2)求两堵木墙之间的距离.
24.(8分)(材料阅读)我们曾解决过课本中的这样一道题目:
如图,四边形是正方形,为边上一点,延长至,使,连接.……
提炼1:绕点顺时针旋转90°得到;
提炼2:;
提炼3:旋转、平移、轴对称是图形全等变换的三种方式.
(问题解决)(1)如图,四边形是正方形,为边上一点,连接,将沿折叠,点落在处,交于点,连接.可得: °;三者间的数量关系是 .
(2)如图,四边形的面积为8,,,连接.求的长度.
(3)如图,在中,,,点在边上,.写出间的数量关系,并证明.
25.(10分)如图,为正方形的边的延长线上一动点,以为一边做正方形,以为一顶点作正方形,且在的延长线上(提示:正方形四条边相等,且四个内角为)
(1)若正方形、的面积分别为,,则正方形的面积为 (直接写结果).
(2)过点做的垂线交的平分线于点,连接,试探求在点运动过程中,的大小是否发生变化,并说明理由.
26.(10分)小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.
(1)直接写出小明所走路程s与时间t的函数关系式;
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、B
4、B
5、A
6、A
7、D
8、D
9、B
10、C
二、填空题(每小题3分,共24分)
11、(-2,-3)
12、1
13、x=1
14、2或1
15、
16、C
17、0.1
18、
三、解答题(共66分)
19、旺季每间为800元,酒店豪华间有50间.
20、(1);(2)
21、(1);(1)是定值,定值为1;(3),, ,,,,
22、(1)甲礼盒生产30万套,乙礼盒生产50万套;(2)方案如下:①;②;③;(3)时,最小值为万元.
23、(1)证明见解析;(2)两堵木墙之间的距离为.
24、(1)45,;(2)4;(3),见解析
25、(1);(2)的大小不会发生变化,理由见解析.
26、(1)s=;(2)37.5;(3)小明在步行过程中停留的时间需减少5 min
淡季
旺季
未入住间数
12
0
日总收入(元)
22800
40000
甲
乙
成本(元/套)
25
28
售价(元/套)
30
38
江苏省淮安市八校联考2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份江苏省淮安市八校联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法错误的是等内容,欢迎下载使用。
江苏省淮安市2023-2024学年数学八上期末联考试题含答案: 这是一份江苏省淮安市2023-2024学年数学八上期末联考试题含答案,共8页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
江苏省盱眙县2023-2024学年八上数学期末质量检测试题含答案: 这是一份江苏省盱眙县2023-2024学年八上数学期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,直线y=ax+b不经过等内容,欢迎下载使用。