江苏省东台市第六教育联盟2023-2024学年八年级数学第一学期期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.点P的坐标为(﹣1,2),则点P位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为( )
A.B.C.D.
3.4的算术平方根是( )
A.4B.2C.D.
4.在平面直角坐标系中,点M(2,-1)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5.一次函数的图象与轴的交点坐标是( )
A.B.C.D.
6.等腰中,,用尺规作图作出线段BD,则下列结论错误的是( )
A.B.C.D.的周长
7.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是( )
A.9B.12C.15D.12或15
8.如图,直线分别与轴,轴相交于点、,以点为圆心,长为半轻画弧交轴于点,再过点作轴的垂线交直线于点,以点为圆心,长为半径画弧交轴于点,,按此作法进行下去,则点的坐标是( )
A.B.C.D.
9.禽流感病毒的形状一般为球形,直径大约为0.000000102米,数0.000000102用科学记数法表示为( )
A.B.C.D.
10.如图,在的正方形网格中,有一个格点(阴影部分),则网格中所有与成轴对称的格点三角形的个数为( )
A.2B.3C.4D.5
二、填空题(每小题3分,共24分)
11.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△ABC与△ABD全等时,则点D的坐标可以是_____.
12.函数的自变量x的取值范围是______.
13.把分式与进行通分时,最简公分母为_____.
14.把因式分解的结果是______.
15.一件工作,甲独做需小时完成,乙独做需小时完成,则甲、乙两人合作需的小时数是______.
16.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为____(用含a、b的代数式表示).
17.我国南宋数学家杨辉所著的《详解九章算术》一书上,用如图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”,请计算的展开式中从左起第三项的系数为__________.
18.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)
①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).
三、解答题(共66分)
19.(10分)阅读下列材料,并按要求解答.
(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.
(模型应用)
应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.
应用2:如图 ③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.
(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;
(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式 .
20.(6分)如图,在△ABC中,已知其周长为26㎝.
(1)在△ABC中,用直尺和圆规作边AB的垂直平分线分别交AB、AC于点D,E(不写作法,但须保留作图痕迹).
(2)连接EB,若AD为4㎝,求△BCE的周长.
21.(6分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
22.(8分)综合与实践:
问题情境:
如图 1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC
问题解决:
(1)按小明的思路,易求得∠APC 的度数为 °;
问题迁移:
如图 2,AB∥CD,点 P 在射线 OM 上运动,记∠PAB=α,∠PCD=β.
(2)当点 P 在 B,D 两点之间运动时,问∠APC 与α,β 之间有何数量关系? 请说明理由;
拓展延伸:
(3)在(2)的条件下,如果点 P 在 B,D 两点外侧运动时 (点 P 与点 O,B,D 三点不重合)请你直接写出当点 P 在线段 OB 上时,∠APC 与 α,β 之间的数量关系 ,点 P 在射线 DM 上时,∠APC 与 α,β 之间的数量关系 .
23.(8分)已知等腰三角形ABC的底边长BC=20cm,D是AC上的一点,且BD=16cm,CD=12cm.
(1)求证:BD⊥AC;
(2)求△ABC的面积.
24.(8分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
频数分布表
(1)把上面频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可);
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?
25.(10分)今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.
(1)用含a的代数式表示第一批茶叶的毛利润;
(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)
26.(10分) (1)分解因式: .
(2)分解因式: ;
(3)解方程: .
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、D
5、C
6、C
7、C
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、(0,﹣2)或(2,﹣2)或(2,2)
12、x≤3
13、 (x﹣y)2(x+y)
14、3a(b-1)1
15、
16、.
17、1
18、①③
三、解答题(共66分)
19、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2
20、(1)见解析;(2)18cm
21、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
22、(1)62;(2),理由详见解析;(3);.
23、(1)见解析;(1)△ABC的面积为cm1.
24、详见解析
25、(1)600a+-99000;(2)240元
26、(1);(2);(3)无解
分组
划记
频数
2.0<x≤3.5
正正
11
3.5<x≤5.0
19
5.0<x≤6.5
6.5<x≤8.0
8.0<x≤9.5
2
合计
50
江苏省东台市第六教育联盟2023-2024学年数学九年级第一学期期末经典试题含答案: 这是一份江苏省东台市第六教育联盟2023-2024学年数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
2023-2024学年江苏省东台市第六联盟九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省东台市第六联盟九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线的对称轴是等内容,欢迎下载使用。
2023-2024学年江苏省东台市第六教育联盟数学九上期末统考试题含答案: 这是一份2023-2024学年江苏省东台市第六教育联盟数学九上期末统考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的一次项系数是等内容,欢迎下载使用。