北京市九级2023-2024学年八上数学期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为( )
A.4B.C.2D.2+2
2.下列各组数中,勾股数的是( )
A.6,8,12B.0.3,0.4,0.5C.,,D.5,12,13
3.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
A.-6和-5之间B.-5和-4之间C.-4和-3之间D.-3和-2之间
4.若分式的值为0,则x应满足的条件是( )
A.x = -1B.x ≠ -1C.x = ±1D.x = 1
5.下列各点位于平面直角坐标系内第二象限的是( )
A.B.C.D.
6.关于的不等式的解集是,则的取值范围是( )
A.B. C. D.
7.如图,在中,的垂直平分线交于点,连接,若,,则的度数为( )
A.90°B.95°C.105°D.115°
8.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是( )
A.14cmB.10cmC.14cm或10cmD.12cm
9.若分式在实数范围内有意义,则x的取值范围是( )
A.B.C.D.
10.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是( )
A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)
二、填空题(每小题3分,共24分)
11.如图,在一个长为8cm,宽为5cm的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为2cm的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是_____.
12.用不等式表示x的3倍与5的和不大于10是____________________;
13.计算:=_________.
14.若分式 有意义,则的取值范围是_______________ .
15.计算:=__________(要求结果用正整数指数幂表示).
16.光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s计算,则这颗恒星到地球的距离是_______km.
17.若式子4x2-mx+9是完全平方式,则m的值为__________________.
18.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E, AE=3cm,△ADC的周长为9cm,则△ABC的周长是____ ___
三、解答题(共66分)
19.(10分)如图,已知△ABC.
(1)求作点P,使点P到B、C两点的距离相等,且点P到∠BAC两边的距离也相等(尺规作图,保留作图痕迹,不写作法).
(2)在(1)中,连接PB、PC,若∠BAC=40°,求∠BPC的度数.
20.(6分)请你先化简:,然后从中选一个合适的整数作为x的值代入求值.
21.(6分)某数学兴趣小组开展了一次活动,过程如下:设.现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线、上.
活动一、如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(为第1根小棒)
数学思考:
(1)小棒能无限摆下去吗?答: (填“能”或“不能”)
(2)设,求的度数;
活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中为第一根小棒,且.
数学思考:
(3)若已经摆放了3根小棒,则 , , ;(用含的式子表示)
(4)若只能摆放5根小棒,则的取值范围是 .
22.(8分)在中,,将绕点A顺时针旋转到的位置,点E在斜边AB上,连结BD,过点D作于点F.
(1)如图1,若点F与点A重合.①求证:;②若,求出;
(2)若,如图2,当点F在线段CA的延长线上时,判断线段AF与线段AB的数量关系.并说明理由.
23.(8分)如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.
(1)求证:DG=BC;
(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.
(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.
24.(8分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.
(1)求甲、乙两仓库各存放原料多少吨;
(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);
(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.
25.(10分)阅读下列一段文字,然后回答下列问题.
已知平面内两点 M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算: MN= .
例如:已知 P(3,1)、Q(1,﹣2),则这两点间的距离 PQ== .
特别地,如果两点 M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐 标轴,那么这两点间的距离公式可简化为 MN=丨 x1﹣x2 丨或丨 y1﹣y2 丨.
(1)已知 A(1,2)、B(﹣2,﹣3),试求 A、B 两点间的距离;
(2)已知 A、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为﹣1,
试求 A、B 两 点间的距离;
(3)已知△ABC 的顶点坐标分别为 A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状 吗?请说明理由.
26.(10分)参加学校运动会,八年级1班第一天购买了水果,面包,饮料,药品等四种食品,四种食品购买金额的统计图表如图1、图2所示,若将水果、面包、药品三种食品统称为非饮料食品,并规定t=饮料金额:非饮料金额.
(1)①求t的值;
②求扇形统计图中钝角∠AOB的度数
(2)根据实际需要,该班第二天购买这四种食品时,增加购买饮料金额,同时减少购买面包金额假设增加购买饮料金额的25%等于减少购买面包的金额,且购买面包的金额不少于100元,求t的取值范围
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、A
4、D
5、A
6、C
7、C
8、A
9、C
10、D
二、填空题(每小题3分,共24分)
11、13cm.
12、3x+5≤1
13、
14、
15、
16、3.6×1013
17、±12
18、15cm
三、解答题(共66分)
19、(1)答案见解析;(2)∠BPC的度数为140°.
20、 ,当时,原式.
21、(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.
22、(1)①证明见解析;②;
(2),理由见解析.
23、(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析
24、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时, W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时, W随m的增大而减小.
25、 (1) (2);(3)△ABC是直角三角形,
26、(1)①;②;(2)
北京市教院附中2023-2024学年九上数学期末考试模拟试题含答案: 这是一份北京市教院附中2023-2024学年九上数学期末考试模拟试题含答案,共9页。试卷主要包含了下列事件中,是必然事件的是,一元二次方程x2-x=0的根是等内容,欢迎下载使用。
北京市第五十六中学2023-2024学年八上数学期末考试试题含答案: 这是一份北京市第五十六中学2023-2024学年八上数学期末考试试题含答案,共7页。试卷主要包含了已知,,是直线,平面直角坐标系中,点P等内容,欢迎下载使用。
北京市大兴区八下数期末考试2023-2024学年八上数学期末质量检测试题含答案: 这是一份北京市大兴区八下数期末考试2023-2024学年八上数学期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若,则内应填的式子是,平面直角坐标系中,点P的坐标是,下列实数中,属于无理数的是等内容,欢迎下载使用。