云南省2023-2024学年数学八上期末综合测试试题含答案
展开
这是一份云南省2023-2024学年数学八上期末综合测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列“表情图”中,属于轴对称图形的是
A.B.C.D.
2.在共有l5人参加的演讲加比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的
A.平均数B.众数C.中位数D.方差
3.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为( )
A.(1,2)B.(2,2)C.(3,2)D.(4,2)
4.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )
A.点AB.点BC.点CD.点D
5.如图,小明将几块六边形纸片分别剪掉了一部分(虚线部分),得到了一个新多边形,若新多边形的内角和是其外角和的倍,则对应的图形是( )
A. B. C. D.
6.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是( )
A.11B.9C.7D.4
7.如图,在等边△ABC中,DE分别是边AB、AC上的点,且AD=CE,则∠ADC+∠BEA=( )
A.180°B.170°C.160°D.150°
8.人体中红细胞的直径约为0.0000077米,将0.0000077用科学记数法表示为( )
A.7.7×10﹣6B.7.7×10﹣5C.0.77×10﹣6D.0.77×10﹣5
9.如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为( )
A.6B.3C.4D.2
10.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为( )
A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)
二、填空题(每小题3分,共24分)
11.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为 .
12.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是_________元.
13.如图,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,垂足是D,若AB=8cm,则AD=__cm.
14.若点在第二象限,且到原点的距离是5,则________.
15.因式分解:-2x2+2=___________.
16.直线y=2x-6与y轴的交点坐标为________.
17.如图,∠AOB=30º,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=___________.
18.若,则等于______.
三、解答题(共66分)
19.(10分)网购是现在人们常用的购物方式,通常网购的商品为防止损坏会采用盒子进行包装,均是容积为立方分米无盖的长方体盒子(如图).
(1)图中盒子底面是正方形,盒子底面是长方形,盒子比盒子高6分米,和两个盒子都选用相同的材料制作成侧面和底面,制作底面的材料1.5元/平方分米,其中盒子底面制作费用是盒子底面制作费用的3倍,当立方分米时,求盒子的高(温馨提示:要求用列分式方程求解).
(2)在(1)的条件下,已知盒子侧面制作材料的费用是0.5元/平方分米,求制作一个盒子的制作费用是多少元?
(3)设的值为(2)中所求的一个盒子的制作费用,请分解因式; .
20.(6分)(问题)
在中,,,点在直线上(除外),分别经过点和点作和的垂线,两条垂线交于点,研究和的数量关系.
(探究发现)
某数学兴趣小组在探究,的关系时,运用“从特殊到一般”的数学思想,他们发现当点是中点时,只需要取边的中点(如图1),通过推理证明就可以得到和的数量关系,请你按照这种思路直接写出和的数量关系;
(数学思考)
那么点在直线上(除外)(其他条件不变),上面得到的结论是否仍然成立呢?
请你从“点在线段上”“点在线段的延长线上”“点在线段的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论.
21.(6分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:
(1)这10个西瓜质量的众数和中位数分别是 和 ;
(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克?
22.(8分)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.
(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.
(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.
23.(8分)在平面直角坐标系xOy中,已知一次函数的图象经过点A(5,0),B(1,4).
(1)求这个一次函数的表达式;
(2)直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为 .
24.(8分)在△ABC中,高AD和BE所在直线交于点H,且BH=AC,则∠ABC=____.
25.(10分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当时,求与之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
26.(10分)若与成正比例,且时,.
(1)求该函数的解析式;
(2)求出此函数图象与,轴的交点坐标,并在本题所给的坐标系中画出此函数图象.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、B
5、A
6、A
7、A
8、A
9、B
10、A
二、填空题(每小题3分,共24分)
11、
12、5.1
13、2
14、-4
15、-2(x+1)(x-1)
16、(0,-6)
17、1
18、1
三、解答题(共66分)
19、(1)B盒子的高为3分米;(2)制作一个盒子的制作费用是240元;(3).
20、(1);(2);(3)仍然成立.
.
21、(1)5.1千克,5.1千克;(2)2941千克.
22、(1)见解析;(2)见解析
23、(1)y=﹣x+1;(2).
24、45°或135°
25、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.
26、(1);(2)该函数与x轴的交点为(-1,0),与y轴的交点为(0,2),图象见解析
西瓜质量(单位:千克)
5.4
5.3
5.0
4.8
4.4
4.0
西瓜数量(单位:个)
1
2
3
2
1
1
相关试卷
这是一份2023-2024学年云南省普洱市名校数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年云南省文山市数学九上期末综合测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份云南省泸西县2023-2024学年数学八上期末联考模拟试题含答案,共8页。试卷主要包含了在下列各数中,无理数是,化简的结果,若是完全平方式,则m的值等于等内容,欢迎下载使用。