年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)-备战2024年中考数学重难题型(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(原卷版).docx
    • 解析
      专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版).docx
    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(原卷版)第1页
    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(原卷版)第2页
    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(原卷版)第3页
    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)第1页
    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)第2页
    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)-备战2024年中考数学重难题型(全国通用)

    展开

    这是一份专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)-备战2024年中考数学重难题型(全国通用),文件包含专题12一次函数与几何图形综合题函数与三角形函数与平行四边形最值问题原卷版docx、专题12一次函数与几何图形综合题函数与三角形函数与平行四边形最值问题解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
    类型一与三角形有关
    1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是( )
    A.B.C.D.
    2.(2020·宁夏中考真题)如图,直线与x轴、y轴分别交于A、B两点,把绕点B逆时针旋转90°后得到,则点的坐标是_____.
    3.(2021·广西贺州市·中考真题)如图,一次函数与坐标轴分别交于,两点,点,分别是线段,上的点,且,,则点的标为________.
    4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.
    5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A(-2,0),直线与x轴交于点B,以AB为边作等边,过点作轴,交直线l于点,以为边作等边,过点作轴,交直线l于点,以为边作等边,以此类推……,则点的纵坐标是______________
    6.(2022·陕西)如图,的顶点坐标分别为.将平移后得到,且点A的对应点是,点B、C的对应点分别是.
    (1)点A、之间的距离是__________;
    (2)请在图中画出.
    7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点在直线上,过点作,交轴于点;过点作轴,交直线于点;过点作,交轴于点;过点作轴,交直线于点;…;按此作法进行下去,则点的坐标为_____________.
    8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O为原点,点,点B在y轴的正半轴上,.矩形的顶点D,E,C分别在上,.将矩形沿x轴向右平移,当矩形与重叠部分的面积为时,则矩形向右平移的距离为___________.
    9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.
    (1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.
    ①若,求证:.
    ②若,求四边形的面积.
    (2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由.
    10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:
    如图,点是弧上一动点,线段点是线段的中点,过点作,交的延长线于点.当为等腰三角形时,求线段的长度.
    小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:
    根据点在弧上的不同位置,画出相应的图形,测量线段的长度,得到下表的几组对应值.
    操作中发现:
    ①"当点为弧的中点时, ".则上中的值是
    ②"线段的长度无需测量即可得到".请简要说明理由;
    将线段的长度作为自变量和的长度都是的函数,分别记为和,并在平面直角坐标系中画出了函数的图象,如图所示.请在同一坐标系中画出函数的图象;
    继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当为等腰三角形时,线段长度的近似值.(结果保留一位小数).
    11.(2020·河北中考真题)如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.
    (1)当点在上时,求点与点的最短距离;
    (2)若点在上,且将的面积分成上下4:5两部分时,求的长;
    (3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);
    (4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.
    12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().
    (1)当点落在边上时,求的值;
    (2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;
    (3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由.
    13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点为坐标原点,直线与轴的正半轴交于点A,与轴的负半轴交于点B, ,过点A作轴的垂线与过点O的直线相交于点C,直线OC的解析式为,过点C作轴,垂足为.
    (1)如图1,求直线的解析式;
    (2)如图2,点N在线段上,连接ON,点P在线段ON上,过P点作轴,垂足为D,交OC于点E,若,求的值;
    (3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作轴的平行线交BQ于点G,连接PF交轴于点H,连接EH,若,求点P的坐标.
    类型二与平行四边形有关
    14.(2022·山东泰安)如图,四边形为平行四边形,则点B的坐标为________.
    15.(2022·甘肃武威)如图1,在菱形中,,动点从点出发,沿折线方向匀速运动,运动到点停止.设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( )
    A.B.C.D.
    16.(2020·黑龙江牡丹江?中考真题)如图,已知直线与x轴交于点A,与y轴交于点B,线段的长是方程的一个根,.请解答下列问题:
    (1)求点A,B的坐标;
    (2)直线交x轴负半轴于点E,交y轴正半轴于点F,交直线于点C.若C是的中点,,反比例函数图象的一支经过点C,求k的值;
    (3)在(2)的条件下,过点C作,垂足为D,点M在直线上,点N在直线上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
    类型三最值问题
    17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为( )
    A.B.C.D.
    18.(2020·湖南永州?中考真题)已知点和直线,求点P到直线的距离d可用公式计算.根据以上材料解决下面问题:如图,的圆心C的坐标为,半径为1,直线l的表达式为,P是直线l上的动点,Q是上的动点,则的最小值是( )
    A.B.C.D.2
    19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知,在x轴上取两点C,D(点C在点D左侧),且始终保持,线段在x轴上平移,当的值最小时,点C的坐标为________.
    20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为 .
    21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系中,半径为2的与轴的正半轴交于点,点是上一动点,点为弦的中点,直线与轴、轴分别交于点、,则面积的最小值为________.
    【答案】2
    22.(2020·北京中考真题)在平面直角坐标系中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦(分别为点A,B的对应点),线段长度的最小值称为线段AB到⊙O的“平移距离”.
    (1)如图,平移线段AB到⊙O的长度为1的弦和,则这两条弦的位置关系是 ;在点中,连接点A与点 的线段的长度等于线段AB到⊙O的“平移距离”;
    (2)若点A,B都在直线上,记线段AB到⊙O的“平移距离”为,求的最小值;
    (3)若点A的坐标为,记线段AB到⊙O的“平移距离”为,直接写出的取值范围.

    相关试卷

    专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用):

    这是一份专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题24二次函数与几何图形综合题与圆有关问题原卷版docx、专题24二次函数与几何图形综合题与圆有关问题解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    专题20 二次函数与几何图形综合题(与面积问题)-备战2024年中考数学重难题型(全国通用):

    这是一份专题20 二次函数与几何图形综合题(与面积问题)-备战2024年中考数学重难题型(全国通用),文件包含专题20二次函数与几何图形综合题与面积问题原卷版docx、专题20二次函数与几何图形综合题与面积问题解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。

    专题19 二次函数与几何图形综合题(与线段问题)-备战2024年中考数学重难题型(全国通用):

    这是一份专题19 二次函数与几何图形综合题(与线段问题)-备战2024年中考数学重难题型(全国通用),文件包含专题19二次函数与几何图形综合题与线段问题原卷版docx、专题19二次函数与几何图形综合题与线段问题解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map