|试卷下载
搜索
    上传资料 赚现金
    2017年陕西省延安中考数学真题及答案
    立即下载
    加入资料篮
    2017年陕西省延安中考数学真题及答案01
    2017年陕西省延安中考数学真题及答案02
    2017年陕西省延安中考数学真题及答案03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017年陕西省延安中考数学真题及答案

    展开
    这是一份2017年陕西省延安中考数学真题及答案,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.(3分)计算:(﹣)2﹣1=( )
    A.﹣B.﹣C.﹣D.0
    2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )
    A.B.C.D.
    3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
    A.2B.8C.﹣2D.﹣8
    4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为( )
    A.55°B.75°C.65°D.85°
    5.(3分)化简:﹣,结果正确的是( )
    A.1B.
    C.D.x2+y2
    6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为( )
    A.3B.6C.3D.
    7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
    A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2
    8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
    A.B.C.D.
    9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为( )
    A.5B.C.5D.5
    10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )
    A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)

    二、填空题(本大题共4小题,每小题3分,共12分)
    11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是 .
    12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.
    A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .
    B.tan38°15′≈ .(结果精确到0.01)
    13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为 .
    14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为 .

    三、解答题(本大题共11小题,共78分)
    15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.
    16.(5分)解方程:﹣=1.
    17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
    18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.
    请你根据以上提供的信息,解答下列问题:
    (1)补全频数分布直方图和扇形统计图;
    (2)所抽取的七年级学生早锻炼时间的中位数落在 区间内;
    (3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)
    19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.
    20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cs23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cs24°≈0.9135,tan24°≈0.4452.)
    21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.
    最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:
    现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.
    根据以上提供的信息,请你解答下列问题:
    (1)求出y与x之间的函数关系式;
    (2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.
    22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
    根据以上情况,请你回答下列问题:
    (1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?
    (2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.
    23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,
    (1)求弦AC的长;
    (2)求证:BC∥PA.
    24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
    (1)求抛物线C1,C2的函数表达式;
    (2)求A、B两点的坐标;
    (3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
    25.(12分)问题提出
    (1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为 ;
    问题探究
    (2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
    问题解决
    (3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
    如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.
    请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)

    参考答案
    一、选择题(本大题共10小题,每小题3分,共30分)
    1.(3分)(2017•陕西)计算:(﹣)2﹣1=( )
    A.﹣B.﹣C.﹣D.0
    【分析】原式先计算乘方运算,再计算加减运算即可得到结果.
    【解答】解:原式=﹣1=﹣,
    故选C
    【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

    2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )
    A.B.C.D.
    【分析】根据从正面看得到的图形是主视图,可得答案.
    【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,
    故选:B.
    【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.

    3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
    A.2B.8C.﹣2D.﹣8
    【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.
    【解答】解:设正比例函数解析式为:y=kx,
    将点A(3,﹣6)代入可得:3k=﹣6,
    解得:k=﹣2,
    ∴函数解析式为:y=﹣2x,
    将B(m,﹣4)代入可得:﹣2m=﹣4,
    解得m=2,
    故选:A.
    【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.

    4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为( )
    A.55°B.75°C.65°D.85°
    【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.
    【解答】解:∵∠1=25°,
    ∴∠3=90°﹣∠1=90°﹣25°=65°.
    ∵a∥b,
    ∴∠2=∠3=65°.
    故选:C.
    【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.

    5.(3分)(2017•陕西)化简:﹣,结果正确的是( )
    A.1B.
    C.D.x2+y2
    【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.
    【解答】解:原式==.
    故选B
    【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

    6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为( )
    A.3B.6C.3D.
    【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.
    【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,
    ∴AB==3,∠CAB=45°,
    ∵△ABC和△A′B′C′大小、形状完全相同,
    ∴∠C′AB′=∠CAB=45°,AB′=AB=3,
    ∴∠CAB′=90°,
    ∴B′C==3,
    故选:A.
    【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.

    7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
    A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2
    【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.
    【解答】解:∵直线l2与x轴的交点为A(﹣2,0),
    ∴﹣2k+b=0,

    解得
    ∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,

    解得0<k<2.
    故选:D.
    【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.

    8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
    A.B.C.D.
    【分析】根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.
    【解答】解:如图,连接BE.
    ∵四边形ABCD是矩形,
    ∴AB=CD=2,BC=AD=3,∠D=90°,
    在Rt△ADE中,AE===,
    ∵S△ABE=S矩形ABCD=3=•AE•BF,
    ∴BF=.
    故选B.
    【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.

    9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为( )
    A.5B.C.5D.5
    【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.
    【解答】解:连接OA、OB、OP,
    ∵∠C=30°,
    ∴∠APB=∠C=30°,
    ∵PB=AB,
    ∴∠PAB=∠APB=30°
    ∴∠ABP=120°,
    ∵PB=AB,
    ∴OB⊥AP,AD=PD,
    ∴∠OBP=∠OBA=60°,
    ∵OB=OA,
    ∴△AOB是等边三角形,
    ∴AB=OA=5,
    则Rt△PBD中,PD=cs30°•PB=×5=,
    ∴AP=2PD=5,
    故选D.
    【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.

    10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )
    A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)
    【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.
    【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.
    ∴点M(m,﹣m2﹣4).
    ∴点M′(﹣m,m2+4).
    ∴m2+2m2﹣4=m2+4.
    解得m=±2.
    ∵m>0,
    ∴m=2.
    ∴M(2,﹣8).
    故选C.
    【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.

    二、填空题(本大题共4小题,每小题3分,共12分)
    11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是 π .
    【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.
    【解答】解:根据实数比较大小的方法,可得
    π>>0>>﹣5,
    故实数﹣5,,0,π,其中最大的数是π.
    故答案为:π.
    【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.

    12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.
    A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为 64° .
    B.tan38°15′≈ 2.03 .(结果精确到0.01)
    【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);
    B:利用科学计算器计算可得.
    【解答】解:A、∵∠A=52°,
    ∴∠ABC+∠ACB=180°﹣∠A=128°,
    ∵BD平分∠ABC、CE平分∠ACB,
    ∴∠1=∠ABC、∠2=∠ACB,
    则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,
    故答案为:64°;
    B、tan38°15′≈2.5713×0.7883≈2.03,
    故答案为:2.03.
    【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.

    13.(3分)(2017•陕西)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为 1 .
    【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.
    【解答】解:设A(a,b),则B(a,﹣b),
    依题意得:,
    所以=0,即5m﹣5=0,
    解得m=1.
    故答案是:1.
    【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.

    14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为 18 .
    【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.
    【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;
    ∵∠BAD=∠BCD=90°
    ∴四边形AMCN为矩形,∠MAN=90°;
    ∵∠BAD=90°,
    ∴∠BAM=∠DAN;
    在△ABM与△ADN中,

    ∴△ABM≌△ADN(AAS),
    ∴AM=AN(设为λ);△ABM与△ADN的面积相等;
    ∴四边形ABCD的面积=正方形AMCN的面积;
    由勾股定理得:AC2=AM2+MC2,而AC=6;
    ∴2λ2=36,λ2=18,
    故答案为:18.
    【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.

    三、解答题(本大题共11小题,共78分)
    15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.
    【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.
    【解答】解:原式=﹣+2﹣﹣2
    =﹣2﹣
    =﹣3
    【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.

    16.(5分)(2017•陕西)解方程:﹣=1.
    【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.
    【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),
    去括号得,x2+6x+9﹣2x+6=x2﹣9,
    移项,系数化为1,得x=﹣6,
    经检验,x=﹣6是原方程的解.
    【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.

    17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
    【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.
    【解答】解:如图,点P即为所求.
    【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.

    18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.
    请你根据以上提供的信息,解答下列问题:
    (1)补全频数分布直方图和扇形统计图;
    (2)所抽取的七年级学生早锻炼时间的中位数落在 C 区间内;
    (3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)
    【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;
    (2)根据中位数的定义求解可得;
    (3)利用样本估计总体思想求解可得.
    【解答】解:(1)本次调查的总人数为10÷5%=200,
    则20~30分钟的人数为200×65%=130(人),
    D项目的百分比为1﹣(5%+10%+65%)=20%,
    补全图形如下:
    (2)由于共有200个数据,其中位数是第100、101个数据的平均数,
    则其中位数位于C区间内,
    故答案为:C;
    (3)1200×(65%+20%)=1020(人),
    答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.
    【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

    19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.
    【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.
    【解答】证明:∵四边形ABCD是正方形,
    ∴∠ADF=CDE=90°,AD=CD.
    ∵AE=CF,
    ∴DE=DF,
    在△ADF和△CDE中,
    ∴△ADF≌△CDE(SAS),
    ∴∠DAF=∠DCE,
    在△AGE和△CGF中,,
    ∴△AGE≌△CGF(AAS),
    ∴AG=CG.
    【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.

    20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cs23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cs24°≈0.9135,tan24°≈0.4452.)
    【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.
    【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,
    设AN=x米,则BD=CE=x米,
    在Rt△MBD中,MD=x•tan23°,
    在Rt△MCE中,ME=x•tan24°,
    ∵ME﹣MD=DE=BC,
    ∴x•tan24°﹣x•tan23°=1.7﹣1,
    ∴x=,解得x≈34(米).
    答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.
    【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.

    21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.
    最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:
    现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.
    根据以上提供的信息,请你解答下列问题:
    (1)求出y与x之间的函数关系式;
    (2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.
    【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;
    (2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.
    【解答】解:(1)由题意得,
    y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)
    =7500x+68000,
    (2)由题意得,7500x+6800≥100000,
    ∴x≥4,
    ∵x为整数,
    ∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.
    【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.

    22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
    根据以上情况,请你回答下列问题:
    (1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?
    (2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.
    【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;
    (2)根据题意可以写出所有的可能性,从而可以解答本题.
    【解答】解:(1)由题意可得,
    小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,
    即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;
    (2)由题意可得,出现的所有可能性是:
    (A,A)、(A,B)、(A,C)、(A,C)、
    (A,A)、(A,B)、(A,C)、(A,C)、
    (B,A)、(B,B)、(B,C)、(B,C)、
    (C,A)、(C,B)、(C,C)、(C,C),
    ∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.
    【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.

    23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,
    (1)求弦AC的长;
    (2)求证:BC∥PA.
    【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.
    (2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA
    【解答】解:(1)连接OA,
    ∵PA是⊙O的切线,
    ∴∠PAO=90°
    ∵∠P=30°,
    ∴∠AOD=60°,
    ∵AC⊥PB,PB过圆心O,
    ∴AD=DC
    在Rt△ODA中,AD=OA•sin60°=
    ∴AC=2AD=5
    (2)∵AC⊥PB,∠P=30°,
    ∴∠PAC=60°,
    ∵∠AOP=60°
    ∴∠BOA=120°,
    ∴∠BCA=60°,
    ∴∠PAC=∠BCA
    ∴BC∥PA
    【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.

    24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
    (1)求抛物线C1,C2的函数表达式;
    (2)求A、B两点的坐标;
    (3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
    【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;
    (2)由C2的函数表达式可求得A、B的坐标;
    (3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.
    【解答】解:
    (1)∵C1、C2关于y轴对称,
    ∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,
    ∴a=1,n=﹣3,
    ∴C1的对称轴为x=1,
    ∴C2的对称轴为x=﹣1,
    ∴m=2,
    ∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;
    (2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,
    ∴A(﹣3,0),B(1,0);
    (3)存在.
    ∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,
    ∴AB只能为平行四边形的一边,
    ∴PQ∥AB且PQ=AB,
    由(2)可知AB=1﹣(﹣3)=4,
    ∴PQ=4,
    设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),
    ①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,
    ∴t2﹣2t﹣3=4+4﹣3=5,
    ∴P(﹣2,5),Q(2,5);
    ②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,
    ∴t2﹣2t﹣3=4﹣4﹣3=﹣3,
    ∴P(2,﹣3),Q(﹣2,﹣3),
    综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).
    【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.

    25.(12分)(2017•陕西)问题提出
    (1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为 4 ;
    问题探究
    (2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
    问题解决
    (3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
    如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.
    请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
    【分析】(1)构建Rt△AOD中,利用cs∠OAD=cs30°=,可得OA的长;
    (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;
    (3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:
    在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.
    【解答】解:(1)如图1,过O作OD⊥AC于D,则AD=AC=×12=6,
    ∵O是内心,△ABC是等边三角形,
    ∴∠OAD=∠BAC=×60°=30°,
    在Rt△AOD中,cs∠OAD=cs30°=,
    ∴OA=6÷=4,
    故答案为:4;
    (2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,
    ∵点O为矩形ABCD的对称中心,
    ∴CQ=AP=3,
    过P作PM⊥BC于点,则PM=AB=12,MQ=18﹣3﹣3=12,
    由勾股定理得:PQ===12;
    (3)如图3,作射线ED交AM于点C
    ∵AD=DB,ED⊥AB,是劣弧,
    ∴所在圆的圆心在射线DC上,
    假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=AB=12,
    在Rt△AOD中,r2=122+(r﹣8)2,
    解得:r=13,
    ∴OD=5,
    过点M作MN⊥AB,垂足为N,
    ∵S△ABM=96,AB=24,
    ∴AB•MN=96,
    ×24×MN=96,
    ∴MN=8,NB=6,AN=18,
    ∵CD∥MN,
    ∴△ADC∽△ANM,
    ∴,
    ∴,
    ∴DC=,
    ∴OD<CD,
    ∴点O在△AMB内部,
    ∴连接MO并延长交于点F,则MF为草坪上的点到M点的最大距离,
    ∵在上任取一点异于点F的点G,连接GO,GM,
    ∴MF=OM+OF=OM+OG>MG,
    即MF>MG,
    过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,
    ∴OM===3,
    ∴MF=OM+r=3+13≈19.71(米),
    答:喷灌龙头的射程至少为19.71米.
    【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.

    品种
    项目
    产量(斤/每棚)
    销售价(元/每斤)
    成本(元/每棚)
    香瓜
    2000
    12
    8000
    甜瓜
    4500
    3
    5000
    品种
    项目
    产量(斤/每棚)
    销售价(元/每斤)
    成本(元/每棚)
    香瓜
    2000
    12
    8000
    甜瓜
    4500
    3
    5000
    相关试卷

    2022年陕西延安中考数学真题及答案: 这是一份2022年陕西延安中考数学真题及答案,共11页。试卷主要包含了本试卷分为第一部分等内容,欢迎下载使用。

    2020年陕西延安中考数学真题及答案: 这是一份2020年陕西延安中考数学真题及答案,共8页。

    2019陕西省延安中考数学真题及答案: 这是一份2019陕西省延安中考数学真题及答案,共11页。试卷主要包含了本试卷分为第一部分和第二部分等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map