2023年初中数学7年级下册同步压轴题期末考试二元一次方程组压轴题考点训练(二)(学生版+教师版)
展开解方程组:,若设,,则原方程组可化为,解方程组得,所以,解方程组得,我们把某个式子看成一个整体,用一个字母去替代它,这种解方程组的方法叫做换元法.
(1)直接填空:已知关于x,y的二元一次方程组,的解为,那么关于m、n的二元一次方程组的解为: .
(2)知识迁移:请用这种方法解方程组.
(3)拓展应用:已知关于x,y的二元一次方程组的解为,
求关于x,y的方程组的解.
2.阅读材料:
已知关于x,y的二元一次方程有一组整数解,则方程的全部整数解可表示为(t为整数).问题:求方程的所有正整数解.
小明参考阅读材料,解决该问题如下:
解:该方程一组整数解为,则全部整数解可表示为(t为整数).
因为,解得
因为t为整数,所以t=0或-1.
所以该方程的正整数解为和.
通过你所知晓的知识,请解决以下问题:
(1)方程3x-5y=11的全部整数解表示为:(t为整数),则______;
(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;
(3)若a,b均为正整数,试判断二元一次方程组有几组正整数解?并写出其解.
3.商场为庆祝母亲节,为了促进消费,推出赠送“优惠券”活动,其中优惠券分为三种类型.如下表:
在此次活动中,小温领到了三种不同类型的“优惠券”若干张,准备给妈妈买礼物.
(1)若小温同时使用三种不同类型的“优惠券”消费,共优惠了520元,已知她用了1张A型“优惠券”,4张C型“优惠券”,则她用了______张B型“优惠券”.
(2)若小温同时使用了5张A,B型“优惠券”,共优惠了404元,那么他使用了A,B“优惠券”各几张?
(3)若小温共领到三种不同类型的“优惠券”各16张(部分未使用),他同时使用A,B,C型中的两种不同类型的“优惠券”消费,共优惠了708元,请问有哪几种优惠券使用方案?(请写出具体解题过程)
4.某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.
(1)如图为该化工厂与A、B两地的距离,已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运输费15000元,铁路运输费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?
①根据题意,甲、乙同学分别列出尚不完整的方程组如下:
甲:乙:
根据甲,乙两名同学所列方程组,请你分别指出未知数x,y,,表示的意义,然后在等式右边补全甲乙两名同学所列方程组
甲:x表示 ,y表示 ;乙:表示 ,表示 ;
②甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.
(2)工厂原计划从A地购买的原料和送往B地的产品一共20吨,若要增加c吨的产品,就要再购买c吨原料,此时产品的销售款与原料的进货款之差等于66000元,同时满足原料总重量的2倍,求需要再购买多少吨的原料?
5.一方有难八方支援,某市政府筹集了防疫必需物资138吨打算运往重疫区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如表所示:(假设每辆车均满载)
(1)若全部物资都用甲、乙两种车型来运送,需运费10000元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,要求三种车同时参与运货,你能求出几种车型的辆数吗?
(3)求出哪种方案的运费最省?最省是多少元.
6.设,都是正整数,则方程的正整数解有 __________.
7.为推进乡村振兴工作,驻村服务队结合当地特点种植了甲、乙两种农作物,经过一段时间,甲、乙两种农作物的种植面积之比为1:3,单位面积产值之比为5:3.为进一步提高经济收入,服务队决定扩大两种农作物的种植面积,经统计,扩大种植面积后(单位面积的产值不变),甲作物的总种植面积占两种作物总种植面积的,且两种作物的总产值提高了,则甲、乙两种作物扩大种植的面积之比为______________.
8.重庆是山水之城,桥梁对跨越山水起着重要作用.重庆因桥梁数量多、规模大、技术水平高、种类多样,而被称为“桥都”.近日,黄桷沱长江大桥正式开工建设,由于建设过程需要大量钢材,建设单位计划租赁若干艘A、B、C三种类型货运轮船,其中三种货运轮船每艘每天的运货量之比为.由于钢材生产效率不稳定,建设单位重新调整了三种轮船的数量,其中A、C型轮船数量各减少一半,B型轮船数量增加一倍,每种类型的轮船每艘每天运货量不变,三种轮船一天的运输总量增加了;若按照调整分配后的轮船的数量,三种轮船完成钢材运输计划需要t天,但实际三种轮船一起运输一段时间后,A、C轮船临时有其他任务被调走了,剩下的钢材由B型轮船运完,完成的总时间比调整分配后的时间多了3天,若B型轮船运输的时间恰好为C型轮船运输时间的2倍,则B型轮船的运输时间为______天.
9.小王带了1千元现金,去商场购买单价67元的A种商品a件和单价为59元的B种商品b件,找回了几张10元和几张1元的钞票(都不超过9张,超过就补大面额的了).小王算了一下,发现找得钱数不对.销售员再仔细算了一遍,发现问题是把两种商品的单价弄反了,重新计算后,找回的10元和1元的钞票张数也恰好相反.问小王购买了______件B种商品.
10.电影票有元、元、元三种票价,于班长恰好用元钱买了张电影票,则票价为元的电影票比票价为元的电影票多___________张.
11.为庆祝五一劳动节,某电商推出适合不同人群的甲,乙两种袋装混合坚果.其中,甲种坚果每袋装有4千克坚果,1千克坚果,1千克坚果;乙种坚果每袋装有1千克坚果,2千克坚果,2千克坚果.甲,乙两种袋装坚果每袋成本价分别为袋中的,,三种坚果的成本价之和.已知坚果每千克成本价为5元,甲种坚果每袋售价为59.8元,利润率为30%,乙种坚果的利润率为20%.若这两种袋装坚果的销售利润率达到24%,则该电商销售甲,乙两种袋装坚果的数量之比是________.
12.响应国家号召,某区推进新型农村建设,强村富民.村民小红家准备将一块良田分成三个区域来种植三种畅销型农作物.爸爸计划好三个区域的占地面积后,小红主动承担起实地划分的任务.划分完毕后,爸爸发现粗心的小红将A区的面积划分给了B区,而原B区的面积错划分给了A区,C区面积未出错,造成现B区的面积占A、B两区面积和的比例达到了.为了协调三个区域的面积占比,爸爸只好将C区面积的分成两部分划分给现在的A区和B区.爸爸划分完后,三个区域的面积比变为,那么爸爸从C区划分给B区的面积与良田总面积的比为_____.
13.某文具店九月初进行开学大酬宾活动,将A、B、C三种学习文具以甲、乙两种方式进行搭配销售,两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C文具2支;已知每支C比每支A成本价低2元,甲种方式(含包装袋)每袋成本为30元,现甲,乙两种方式分别在成本价基础上提高20%,40%进行销售,两种方式销售完毕后利润率达到30%,则甲,乙两种方式的销售量之比为____.
14.已知关于x,y的方程组的解是,则与方程组 有关的的值为_____.
15.任意一个无理数介于两个整数之间,我们定义:若无理数T:m<T<n(其中m为满足不等式的最大整数,n为满足不等式的最小整数),则称无理数T的“雅区间”为(m,n).例如:1<<2,所以的“雅区间”为(1,2).
(1)无理数的“雅区间”是________;
(2)若某一无理数的“雅区间”为(m,n),且满足0<<12,其中是关于x,y的二元一次方程mx﹣ny=c的一组正整数解,则c的值为________.
A型
B型
C型
满368减100
满168减68
满50减20
车型
甲
乙
丙
汽车运载量(吨/辆)
6
9
10
汽车运费(元/辆)
500
600
600
2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练(三)(学生版+教师版): 这是一份2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练(三)(学生版+教师版),文件包含2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练三教师版docx、2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练三学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练(二)(学生版+教师版): 这是一份2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练(二)(学生版+教师版),文件包含2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练二教师版docx、2023年初中数学7年级下册同步压轴题期末考试压轴题模拟训练二学生版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
2023年初中数学7年级下册同步压轴题期末考试相交线与平行线压轴题考点训练(一)(学生版+教师版): 这是一份2023年初中数学7年级下册同步压轴题期末考试相交线与平行线压轴题考点训练(一)(学生版+教师版),文件包含2023年初中数学7年级下册同步压轴题期末考试相交线与平行线压轴题考点训练一教师版docx、2023年初中数学7年级下册同步压轴题期末考试相交线与平行线压轴题考点训练一学生版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。