|试卷下载
搜索
    上传资料 赚现金
    专题30 新定义与阅读理解创新型问题(共31题)(原卷版)
    立即下载
    加入资料篮
    专题30 新定义与阅读理解创新型问题(共31题)(原卷版)01
    专题30 新定义与阅读理解创新型问题(共31题)(原卷版)02
    专题30 新定义与阅读理解创新型问题(共31题)(原卷版)03
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题30 新定义与阅读理解创新型问题(共31题)(原卷版)

    展开
    这是一份专题30 新定义与阅读理解创新型问题(共31题)(原卷版),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知,,则内部的格点个数是( )
    A.266B.270C.271D.285
    2.(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边的边长为3,则该“莱洛三角形”的周长等于( )

    A.B.C.D.
    3.(2023·重庆·统考中考真题)在多项式(其中中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,.下列说法:
    ①存在“绝对操作”,使其运算结果与原多项式相等;
    ②不存在“绝对操作”,使其运算结果与原多项式之和为0;
    ③所有的“绝对操作”共有7种不同运算结果.
    其中正确的个数是
    A.0B.1C.2D.3
    4.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足,我们将这样的点定义为“倍值点”.若关于的二次函数(为常数,)总有两个不同的倍值点,则的取值范围是( )
    A.B.C.D.
    5.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是( )
    A.B.C.D.
    6.(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416.如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为,若用圆内接正十二边形作近似估计,可得的估计值为( )
    A.B.C.3D.
    二、填空题
    7.(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点处离开水面,逆时针旋转上升至轮子上方处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从处(舀水)转动到处(倒水)所经过的路程是________米.(结果保留)

    8.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:
    设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”
    的灯共有多少盏?
    几位同学对该问题展开了讨论:
    甲:应分析每个开关被按的次数找出规律:
    乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……
    丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.
    根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有___________盏.
    9.(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.是以O为圆心,为半径的圆弧,C是弦的中点,D在上,.“会圆术”给出长l的近似值s计算公式:,当,时,__________.(结果保留一位小数)
    10.(2023·北京·统考中考真题)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A,B,C,D,E,F,G七道工序,加工要求如下:
    ①工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,工序F须在工序C,D都完成后进行;
    ②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;
    ③各道工序所需时间如下表所示:
    在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要______分钟.
    11.(2023·重庆·统考中考真题)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵,,∴7311是“天真数”;四位数8421,∵,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记,,若能被10整除,则满足条件的M的最大值为________.
    12.(2023·四川乐山·统考中考真题)定义:若x,y满足且(t为常数),则称点为“和谐点”.
    (1)若是“和谐点”,则__________.
    (2)若双曲线存在“和谐点”,则k的取值范围为__________.
    13.(2023·浙江绍兴·统考中考真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则________.

    14.(2023·重庆·统考中考真题)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数为“递减数”.例如:四位数4129,∵,∴4129是“递减数”;又如:四位数5324,∵,∴5324不是“递减数”.若一个“递减数”为,则这个数为___________;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是___________.
    三、解答题
    15.(2023·内蒙古通辽·统考中考真题)阅读材料:
    材料1:关于x的一元二次方程的两个实数根和系数a,b,c有如下关系:,.
    材料2:已知一元二次方程的两个实数根分别为m,n,求的值.
    解:∵m,n是一元二次方程的两个实数根,
    ∴.
    则.
    根据上述材料,结合你所学的知识,完成下列问题:
    (1)应用:一元二次方程的两个实数根为,则___________,___________;
    (2)类比:已知一元二次方程的两个实数根为m,n,求的值;
    (3)提升:已知实数s,t满足且,求的值.
    16.(2023·江苏徐州·统考中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.
    (1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为 ;
    (2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).
    ①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?
    ②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.
    17.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.

    (1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.
    (2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D.
    (3)如图3,四边形是邻等四边形,,为邻等角,连接,过B作交的延长线于点E.若,求四边形的周长.
    18.(2023·山西·统考中考真题)阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.
    任务:
    (1)填空:材料中的依据1是指:_____________.
    依据2是指:_____________.
    (2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)
    (3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形的周长与对角线长度的关系,并证明你的结论.

    19.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.
    例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.

    (1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;
    (2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.
    ①用含m的式子分别表示;
    ②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;
    (3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.
    20.(2023·湖南张家界·统考中考真题)阅读下面材料:
    将边长分别为a,,,的正方形面积分别记为,,,.

    例如:当,时,
    根据以上材料解答下列问题:
    (1)当,时,______,______;
    (2)当,时,把边长为的正方形面积记作,其中n是正整数,从(1)中的计算结果,你能猜出等于多少吗?并证明你的猜想;
    (3)当,时,令,,,…,,且,求T的值.
    21.(2023·湖北荆州·统考中考真题)如图1,点是线段上与点,点不重合的任意一点,在的同侧分别以,,为顶点作,其中与的一边分别是射线和射线,的两边不在直线上,我们规定这三个角互为等联角,点为等联点,线段为等联线.
    (1)如图2,在个方格的纸上,小正方形的顶点为格点、边长均为1,为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段为等联线、某格点为等联点的等联角,并标出等联角,保留作图痕迹;
    (2)如图3,在中,,,延长至点,使,作的等联角和.将沿折叠,使点落在点处,得到,再延长交的延长线于,连接并延长交的延长线于,连接.
    ①确定的形状,并说明理由;
    ②若,,求等联线和线段的长(用含的式子表示).
    22.(2023·内蒙古赤峰·统考中考真题)定义:在平面直角坐标系中,当点N在图形M的内部,或在图形M上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”.

    (1)如图①,矩形的顶点坐标分别是,,,,在点,,中,是矩形“梦之点”的是___________;
    (2)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是___________,直线的解析式是___________.当时,x的取值范围是___________.
    (3)如图②,已知点A,B是抛物线上的“梦之点”,点C是抛物线的顶点,连接,,,判断的形状,并说明理由.
    23.(2023·北京·统考中考真题)在平面直角坐标系中,的半径为1.对于的弦和外一点C给出如下定义:
    若直线,中一条经过点O,另一条是的切线,则称点C是弦的“关联点”.
    (1)如图,点,,
    ①在点,,中,弦的“关联点”是______.
    ②若点C是弦的“关联点”,直接写出的长;
    (2)已知点,.对于线段上一点S,存在的弦,使得点S是弦的“关联点”,记的长为t,当点S在线段上运动时,直接写出t的取值范围.
    24.(2023·四川凉山·统考中考真题)阅读理解题:
    阅读材料:
    如图1,四边形是矩形,是等腰直角三角形,记为、为,若,则.

    证明:设,∵,∴,
    易证
    ∴,

    ∴,
    若时,当,则.
    同理:若时,当,则.
    根据上述材料,完成下列问题:
    如图2,直线与反比例函数的图象交于点,与轴交于点.将直线绕点顺时针旋转后的直线与轴交于点,过点作轴于点,过点作轴于点,已知.

    (1)求反比例函数的解析式;
    (2)直接写出的值;
    (3)求直线的解析式.
    25.(2023·浙江台州·统考中考真题)【问题背景】
    “刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.
    【实验操作】
    综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如下表:
    任务1 分别计算表中每隔10min水面高度观察值的变化量.
    【建立模型】
    小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.

    任务2 利用时,;时,这两组数据求水面高度h与流水时间t的函数解析式.
    【反思优化】
    经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.
    任务3 (1)计算任务2得到的函数解析式的w值.
    (2)请确定经过的一次函数解析式,使得w的值最小.
    【设计刻度】
    得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.
    任务4 请你简要写出时间刻度的设计方案.
    26.(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由.

    (1)数学思考:谈你解答老师提出的问题;
    (2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.

    ①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;

    ②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果.

    27.(2023·吉林长春·统考中考真题)【感知】如图①,点A、B、P均在上,,则锐角的大小为__________度.

    【探究】小明遇到这样一个问题:如图②,是等边三角形的外接圆,点P在上(点P不与点A、C重合),连结、、.求证:.小明发现,延长至点E,使,连结,通过证明,可推得是等边三角形,进而得证.
    下面是小明的部分证明过程:
    证明:延长至点E,使,连结,
    四边形是的内接四边形,



    是等边三角形.

    请你补全余下的证明过程.
    【应用】如图③,是的外接圆,,点P在上,且点P与点B在的两侧,连结、、.若,则的值为__________.
    28.(2023·广西·统考中考真题)【探究与证明】
    折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.
    【动手操作】如图1,将矩形纸片对折,使与重合,展平纸片,得到折痕;折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,展平纸片,连接,,.

    请完成:
    (1)观察图1中,和,试猜想这三个角的大小关系;
    (2)证明(1)中的猜想;
    【类比操作】如图2,N为矩形纸片的边上的一点,连接,在上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕;折叠纸片,使点B,P分别落在,上,得到折痕l,点B,P的对应点分别为,,展平纸片,连接,.

    请完成:
    (3)证明是的一条三等分线.
    29.(2023·河南·统考中考真题)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.

    (1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.
    (2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:
    ①若,请判断与的数量关系,并说明理由;
    ②若,求,两点间的距离.
    (3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.
    30.(2023·甘肃兰州·统考中考真题)在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.
    例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”.

    (1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;
    (2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;
    (3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.
    31.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.
    同学们,请你结合所学的数学解决下列问题.
    在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.
    (1)求证:无论取什么实数,图象与轴总有公共点;
    (2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.
    工序
    A
    B
    C
    D
    E
    F
    G
    所需时间/分钟
    9
    9
    7
    9
    7
    10
    2
    瓦里尼翁平行四边形
    我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形.

    我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.

    ①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.
    ②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.
    ③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:
    证明:如图2,连接,分别交于点,过点作于点,交于点.
    ∵分别为的中点,∴.(依据1)

    ∴.∵,∴.
    ∵四边形是瓦里尼翁平行四边形,∴,即.
    ∵,即,
    ∴四边形是平行四边形.(依据2)∴.
    ∵,∴.同理,…
    流水时间t/min
    0
    10
    20
    30
    40
    水面高度h/cm(观察值)
    30
    29
    28.1
    27
    25.8
    相关试卷

    专题30 新定义与阅读理解创新型问题(共31题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共31题)--2023年中考数学真题分项汇编(全国通用),文件包含新定义与阅读理解创新型问题共31题解析版pdf、新定义与阅读理解创新型问题共31题学生版pdf等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    专题30 新定义与阅读理解创新型问题(共31题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共31题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题30新定义与阅读理解创新型问题共31题原卷版docx、专题30新定义与阅读理解创新型问题共31题解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    专题30 新定义与阅读理解创新型问题(共31题)-备战2024年数学中考之真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共31题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题30新定义与阅读理解创新型问题共31题原卷版docx、专题30新定义与阅读理解创新型问题共31题解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题30 新定义与阅读理解创新型问题(共31题)(原卷版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map