湖北省沙市中学2022-2023学年高一上学期期末数学试题缺答案
展开
这是一份湖北省沙市中学2022-2023学年高一上学期期末数学试题缺答案,共7页。试卷主要包含了单选题等内容,欢迎下载使用。
命题人:冷劲松 审题人:郭松
考试时间:2023年1月2日
一、单选题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合题目要求.
1.已知集合,则( )
A. B. C. D.
2. “”是“”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
3.已知,令 ,那么 之间的大小关系为( )
A. B. C. D.
4.函数的零点所在区间为( )
A.B.C.D.
5.命题:,使得成立.若是假命题,则实数的取值范围是( )
A. B. C. D.
6.平面直角坐标系中,已知点在单位圆上且位于第三象限,点的纵坐标为,现将点A沿单位圆按顺时针方向运动到点,所经过的弧长为,则点的纵坐标为( )
A. B. C. D.
7.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则( )
A.B.C.D.
8.已知函数恰有2个零点,则实数的取值范围是( )
A. B. C. D.
二、多选题:本大题共4小题,每小题5分,满分20分.在每小题给出的四个选项中,有多项符合要求,全部选对得5分,选对但不全的得2分,有选错的得0分.
9.已知,则下列不等式正确的是( )
A. B. C. D.
10.已知,那么的可能值为( )
A. B. C. D.
11.已知为正数,,则下列说法正确的是( )
A. 的最小值为1B. 的最小值为8
C.的最小值为D.
12.函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,该结论可以推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知函数,则下列命题正确的是( )
A. 若,则函数为奇函数
B. 若,则
C. 函数的图象必有对称中心
D. ,
三、填空题:本大题共4小题,每小题5分,满分20分.
13.函数的定义域为______.
14.《九章算术》是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,在此问题中,扇形的圆心角的弧度数是___________.
15.若函数在单调递增,则实数的取值范围为________.
16.已知函数,关于的方程有三个解,则实数的取值范围为________.
四、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算过程.
17.(本题满分10分)计算下列各式的值:
(1)
(2)
18.(本题满分12分)设函数的定义域为集合的定义域为集合.
(1)当时,求;
(2)若是的必要条件,求实数的取值范围.
19.(本题满分12分) 在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题.
问题:已知函数,,且______.
(1)求函数的解析式;
(2)判断函数在区间上的单调性,并用定义证明.
注:如果选择多个条件分别解答,按第一个解答计分.
20.(本题满分12分)某地某路无人驾驶公交车发车时间间隔(单位:分钟)满足,.经测算,该路无人驾驶公交车载客量与发车时间间隔满足:,其中.
(1)求,并说明的实际意义;
(2)若该路公交车每分钟的净收益(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.
21.(本题满分12分)已知函数
(1)试判断函数的奇偶性;
(2)当时,求函数的值域;
(3)已知,若,使得,求实数的取值范围.
22.(本题满分12分)对于函数,若其定义域内存在实数满足,则称为“局部奇函数”.
(1)已知函数,试判断函数是否为“局部奇函数”,并说明理由;
(2)函数为定义在上的“局部奇函数”,试求实数的取值范围;
(3)是否存在实数,使得函数是定义在上的“局部奇函数”,若存在,请求出实数的取值范围;若不存在,请说明理由
相关试卷
这是一份湖南省长沙市长郡中学2022-2023学年高一上学期期末数学试题及答案,文件包含湖南省长沙市长郡中学2022-2023学年高一上学期期末数学试题教师版含解析docx、湖南省长沙市长郡中学2022-2023学年高一上学期期末数学试题学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份湖南省长沙市长郡中学2022-2023学年高一上学期期末模拟数学试题及答案,文件包含湖南省长沙市长郡中学2022-2023学年高一上学期期末模拟数学试题教师版含解析docx、湖南省长沙市长郡中学2022-2023学年高一上学期期末模拟数学试题学生版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份湖北省沙市中学2023-2024学年高一上学期9月月考数学试题(含答案),文件包含高一数学试卷docx、高一数学答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。