终身会员
搜索
    上传资料 赚现金

    中考数学二轮复习专题23函数与几何综合含解析答案

    立即下载
    加入资料篮
    中考数学二轮复习专题23函数与几何综合含解析答案第1页
    中考数学二轮复习专题23函数与几何综合含解析答案第2页
    中考数学二轮复习专题23函数与几何综合含解析答案第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习专题23函数与几何综合含解析答案

    展开

    这是一份中考数学二轮复习专题23函数与几何综合含解析答案,共28页。


    1.一次函数y=kx+b(k≠0)的图像与反比例函数的图象相交于A(2,3),B(6,n)两点
    (1)求一次函数的解析式
    (2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值
    2.如图,在平面直角坐标系中,矩形的两边、分别在坐标轴上,且,,连接.反比例函数()的图象经过线段的中点,并与、分别交于点、.一次函数的图象经过、两点.
    (1)分别求出一次函数和反比例函数的表达式;
    (2)点是轴上一动点,当的值最小时,点的坐标为______.
    3.如图,一次函数的图象与轴的正半轴交于点,与反比例函数的图像交于两点.以为边作正方形,点落在轴的负半轴上,已知的面积与的面积之比为.
    (1)求一次函数的表达式:
    (2)求点的坐标及外接圆半径的长.
    4.如图,反比例函数上的图象与一次函数的图象相交于,两点.
    (1)求反比例函数和一次函数的解析式;
    (2)设直线交y轴于点C,点是正半轴上的一个动点,过点N作轴交反比例函数的图象于点M,连接,.若,求t的取值范围.
    5.如图所示,在平面直角坐标系中,一次函数的图像与函数的图像(记为)交于点A,过点A作轴于点,且,点在线段上(不含端点),且,过点作直线轴,交于点,交图像于点.
    (1)求的值,并且用含的式子表示点的横坐标;
    (2)连接、、,记、的面积分别为、,设,求的最大值.
    6.如图,点P为函数与函数图象的交点,点P的纵坐标为4,轴,垂足为点B.
    (1)求m的值;
    (2)点M是函数图象上一动点,过点M作于点D,若,求点M的坐标.
    7.如图,在平面直角坐标系xOy中,反比例函数y(x>0)的图象经过点A(4,),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.
    (1)m= ,点C的坐标为 ;
    (2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.
    8.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.
    (1)求反比例函数的解析式;
    (2)求∠EOD的度数.
    9.如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
    (1)填空:k= ;
    (2)求△BDF的面积;
    (3)求证:四边形BDFG为平行四边形.
    10.在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B,
    (1)k的值是 ;
    (2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
    ①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;
    ②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.
    11.在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.
    (1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.
    ①若,求证:.
    ②若,求四边形的面积.
    (2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由.
    12.已知在平面直角坐标系中,点是反比例函数图象上的一个动点,连结的延长线交反比例函数的图象于点,过点作轴于点.
    (1)如图1,过点作轴于点,连结.
    ①若,求证:四边形是平行四边形;
    ②连结,若,求的面积.
    (2)如图2,过点作,交反比例函数的图象于点,连结.试探究:对于确定的实数,动点在运动过程中,的面积是否会发生变化?请说明理由.
    评卷人
    得分
    一、解答题
    评卷人
    得分
    二、证明题
    参考答案:
    1.(1)一次函数y=,(2).
    【分析】(1)利用点A(2,3),求出反比例函数,求出 B(6,1),利用待定系数法求一次函数解析式;
    (2)利用平移求出y=,联立,求出P(-6,-1),Q(-2,-3),在Rt△MON中,由勾股定理MN=,PQ=即可.
    【详解】解:(1)∵反比例函数的图象过A(2,3),
    ∴m=6,
    ∴6n=6,
    ∴n=1,
    ∴B(6,1)
    一次函数y=kx+b(k≠0)的图像与反比例函数的图象相交于A(2,3),B(6,1)两点,
    ∴,
    解得,
    一次函数y=,
    (2)直线AB沿y轴向下平移8个单位后得到直线l,得y=,
    当y=0时,,,当x=0时,y=-4,
    ∴M(-8,0),N(0,-4),

    消去y得,
    解得,
    解得,,
    ∴P(-6,-1),Q(-2,-3),
    在Rt△MON中,
    ∴MN=,
    ∴PQ=,
    ∴.
    【点睛】本题考查待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理,掌握待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理是解题关键.
    2.(1), ;(2)
    【分析】(1)先求出B点的坐标,再由反比例函数过点,求出点的坐标,代入即可,
    由矩形的性质可得、坐标,代入即可求出解析式;
    (2)“将军饮马问题”,作关于轴的对称点,连接,直线与轴交点即为所求.
    【详解】(1) 四边形是矩形,,

    为线段的中点

    将代入,得




    将,代入,得:
    ,解得

    (2)如图:作关于轴的对称点,连接交轴于点P
    当三点共线时,有最小值

    设直线的解析式为
    将,代入,得
    ,解得
    令,得
    【点睛】本题考查了矩形的性质,反比例函数性质,反比例函数和一次函数待定系数法求解析式,反比例函数图像上点的特点,线段和距离最值问题,正确的作辅助线,理解并记忆待定系数法求解的技巧是解题关键.
    3.(1);(2)点的坐标为;外接圆半径的长为
    【分析】(1)过D点作DE∥y轴交x轴于H点,过A点作EF∥x轴交DE于E点,过B作BF∥y轴交EF于F点,证明△ABF≌△DAE,,的面积与的面积之比为得到,进而得到,求出A、D两点坐标即可求解;
    (2)联立一次函数与反比例函数解析式即可求出P点坐标;再求出C点坐标,进而求出CP长度,Rt△CPD外接圆的半径即为CP的一半.
    【详解】解:(1)过D点作DE∥y轴交x轴于H点,过A点作EF∥x轴交DE于E点,过B作BF∥y轴交EF于F点,如下图所示:
    ∵与有公共的底边BO,其面积之比为1:4,
    ∴DH:OA=1:4,
    设,则,
    ∵ABCD为正方形,
    ∴AB=AD,∠BAD=90°,
    ∴∠BAF+∠EAD=90°,
    ∵∠BAF+∠FBA=90°,
    ∴∠FBA=∠EAD,
    在△ABF和△DAE中: ,
    ∴△ABF≌△DAE(AAS),

    又,
    ∴,解得(负值舍去),
    ∴,代入中,
    ∴ ,解得 ,
    ∴一次函数的表达式为;
    (2)联立一次函数与反比例函数解析式: ,
    整理得到:,
    解得 ,,
    ∴点的坐标为;D点的坐标为(4,1)
    ∵四边形ABCD为正方形,
    ∴,
    且,
    在中,由勾股定理:,
    ∴,
    又△CPD为直角三角形,其外接圆的圆心位于斜边PC的中点处,
    ∴△CPD外接圆的半径为.
    【点睛】本题考查了反比例函数与一次函数的综合应用,三角形全等的判定与性质,勾股定理求线段长,本题属于综合题,解题的关键是正确求出点A、D两点坐标.
    4.(1),;(2).
    【分析】(1)先根据点的坐标,利用待定系数法可得反比例函数的解析,从而可得点的坐标,再根据点的坐标,利用待定系数法可得一次函数的解析式;
    (2)先根据一次函数的解析式求出点的坐标,根据反比例函数的解析式求出点的坐标,再根据建立不等式,解不等式即可得.
    【详解】解:(1)将点代入得:,
    则反比例函数的解析式为;
    当时,,解得,即,
    将点代入得:,解得,
    则一次函数的解析式为;
    (2)对于一次函数,
    当时,,即,

    轴,且,
    ,,



    解得.
    【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法是解题关键.
    5.(1),D点横坐标为;(2)
    【分析】(1)先求出A点坐标,再利用待定系数法即可求出k的值,利用OC=t和D点在直线l上即可得到D点横坐标;
    (2)分别用含t的式子表示出、,得到关于t的二次函数,求函数的最大值即可.
    【详解】解:(1)∵,
    ∴A点横坐标为1,
    ∵A点在一次函数的图像上,
    ∴,
    ∴,
    ∵A点也在反比例函数图像上,
    ∴,
    ∴反比例函数解析式为:,
    ∵,直线轴,
    ∴D点纵坐标为t,
    ∵D点在直线l上,
    ∴D点横坐标为,
    综上可得:,D点横坐标为.
    (2)直线轴,交于点,交图像于点,
    ∴E点纵坐标为t,
    将纵坐标t代入反比例函数解析式中得到E点坐标为,
    ∴,A点到DE的距离为,
    ∴,
    ∵轴于点,
    ∴,
    ∴,
    ∴,
    ∴当时,最大=;
    ∴的最大值为.
    【点睛】本题综合考查了反比例函数和一次函数,涉及到了用待定系数法求函数解析式、用点的坐标表示线段的长、平面直角坐标系中三角形的面积表示、平行于x轴的直线上的点的坐标特征等内容,本题综合性较强,要求学生对概念的理解和掌握应做到深刻与扎实,本题蕴含了数形结合的思想方法等.
    6.(1)24;(2)M点的坐标为
    【分析】(1)根据交点坐标的意义,求得点P的横坐标,利用k=xy计算m即可;
    (2)利用分类思想,根据正切的定义,建立等式求解即可.
    【详解】解:(1)∵点P纵坐标为4,
    ∴,解得,
    ∴,
    ∴.
    (2)∵,
    ∴,
    设,则,
    当M点在P点右侧,
    ∴M点的坐标为,
    ∴(6+2t)(4-t)=24,
    解得:,(舍去),
    当时,,
    ∴M点的坐标为,
    当M点在P点的左侧,
    ∴M点的坐标为,
    ∴(6-2t)(4+t)=24,
    解得:,,均舍去.
    综上,M点的坐标为.
    【点睛】本题考查了一次函数与反比例函数的交点问题,反比例函数解析式的确定,三角函数,一元二次方程的解法,熟练掌握函数图像交点的意义,灵活运用三角函数的定义,构造一元二次方程并准确解答是解题的关键.
    7.(1)6,(2,0)
    (2)
    【分析】(1)将A点坐标代入反比例函数解析式,即可求出m的值;根据题意结合中点坐标公式即可求出C点的坐标;
    (2)设直线AB的解析式为y=kx+b,利用待定系数法即可求出直线AB的解析式为yx,故可设D(x,x)(),则E(x,),再根据三角形面积公式即可用m表示出S△ODE,最后根据二次函数的性质即可求出其最大值.
    (1)
    ∵反比例函数y(x>0)的图象经过点A(4,),
    ∴m6,
    ∵AB交x轴于点C,C为线段AB的中点,B点在y轴上.
    ∴,
    ∴C(2,0);
    故答案为6,(2,0);
    (2)
    设直线AB的解析式为y=kx+b,
    把A(4,),C(2,0)代入得,
    解得,
    ∴直线AB的解析式为yx;
    ∵点D为线段AB上的一个动点,
    ∴设D(x,x)(),
    ∵DE∥y轴,
    ∴E(x,),
    ∴S△ODEx•x2x+3( x-1)2,
    ∵,
    ∴当x=1时,△ODE的面积最大值为.
    【点睛】本题为反比函数与一次函数的综合,反比例函数与三角形的综合,考查利用待定系数法求函数解析式,中点坐标公式以及二次函数的应用.利用数形结合的思想是解答本题的关键.
    8.(1)y
    (2)15°
    【分析】(1)根据题意易证△AOD是等腰直角三角形,再根据勾股定理即可求出,即得出A点坐标,最后将A点坐标代入反比例函数解析式,求出k的值即可;
    (2)根据题意易证OA=AE,再根据直角三角形斜边中线等于斜边一半,即可推出CE=AE=BE,即可根据等腰三角形的性质得出∠AOE=∠AEO,∠ECB=∠EBC,再根据三角形外角性质得出∠AEO=∠ECB+∠EBC=2∠EBC,最后根据平行线的性质可得出∠EOD=∠ECB,即得出∠AOE=2∠EOD,即可求出∠EOD的大小.
    【详解】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,
    ∴△AOD是等腰直角三角形,
    ∵,
    ∴,
    ∴A(2,2),
    ∵顶点A在反比例函数y(x>0)的图象上,
    ∴,
    解得:k=4,
    ∴反比例函数的解析式为y;
    (2)∵AB=2OA,点E恰为AB的中点,
    ∴OA=AE,
    ∵Rt△ABC中,∠ACB=90°,
    ∴CE=AE=BE,
    ∴∠AOE=∠AEO,∠ECB=∠EBC,
    ∴∠AEO=∠ECB+∠EBC=2∠EBC,
    ∵轴,
    ∴∠EOD=∠ECB,
    ∴∠AOE=2∠EOD,
    ∵∠AOD=45°,
    ∴∠EOD=15°.
    【点睛】本题为反比例函数与三角形的综合题,考查等腰直角三角形的判定和性质,勾股定理,利用待定系数法求函数解析式,直角三角形的性质,三角形外角的性质以及平行线的性质.综合性强,利用数形结合的思想是解答本题的关键.
    9.(1)2;(2)3;(3)证明见解析.
    【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;
    (2)△BDF的面积=△OBD的面积=S△BOA-S△OAD,即可求解;
    (3)确定直线DE的表达式为:y=-,令y=0,则x=5m,故点F(5m,0),即可求解.
    【详解】解:(1)设点B(s,t),st=8,则点M(s,t),
    则k=s•t=st=2,
    故答案为2;
    (2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;
    (3)设点D(m,),则点B(4m,),
    ∵点G与点O关于点C对称,故点G(8m,0),
    则点E(4m,),
    设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,
    故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),
    故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,
    则FG∥BD,故四边形BDFG为平行四边形.
    【点睛】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.
    10.(1);(2)①8+4;②点C的坐标为(﹣3,)或(11,).
    【分析】(1)根据点A的坐标,利用待定系数法可求出k值;
    (2)①利用一次函数图像上点的坐标特征可得出点B的坐标,由平行四边形的性质结合点E为OB的中点可得出CE是△ABO的中位线,结合点A的坐标可得出CE的长,在Rt△DOE中,利用勾股定理可求出DE的长,再利用平行四边形的周长公式即可求出的周长;
    ②设点C的坐标为(x,x +4),则CE=|x|,CD=|x+4|,利用三角形的面积公式结合△CDE的面积为,可得出关于x的方程,解之即可得出结论.
    【详解】解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,
    解得:k=.故答案为.
    (2)①由(1)可知直线AB的解析式为y=x+4.
    当x=0时,y=x+4=4,∴点B的坐标为(0,4),
    ∴OB=4.
    ∵点E为OB的中点,∴BE=OE=OB=2.
    ∵点A的坐标为(8,0),∴OA=8.
    ∵四边形OCED是平行四边形,
    ∴CE∥DA,
    ∴,∴BC=AC,
    ∴CE是△ABO的中位线,∴CE=OA=4.
    ∵四边形OCED是平行四边形,
    ∴OD=CE=4,OC=DE.
    在Rt△DOE中,∠DOE=90°,OD=4,OE=2,
    ∴DE=,
    ∴=2(OD+DE)=2(4+2)=8+4.
    ②如图,设点C的坐标为(x,x +4),则CE=|x|,CD=|x+4|,
    ∴S△CDE=CD•CE=|﹣x2+2x|=,
    ∴x2+8x+33=0或x2+8x﹣33=0.
    方程x2+8x+33=0无解;
    解方程x2+8x﹣33=0,
    解得:x1=﹣3,x2=11,
    ∴点C的坐标为(﹣3,)或(11,).
    【点睛】本题考查了待定系数法求一次函数解析式、一次函数图像上点的坐标特征、平行四边形的性质、勾股定理、平行四边形的周长、三角形的面积、解一元二次方程以及三角形的中位线,解题的关键是:(1)根据点的坐标,利用待定系数法求出k值;(2)①利用勾股定理及三角形中位线的性质,求出CE、DE的长;②利用三角形的面积公式结合△CDE的面积为,找出关于x的方程.
    11.(1)①见解析;②;(2)存在,,4,9,1
    【分析】(1)①等腰三角形等角对等边,则,根据等角的余角相等和对顶角相等,得到,根据等角对等边,即可证明;
    ②添加辅助线,过点A作于点H,根据直线l的解析式和角的关系,分别求出线段AB、BC、OB、OC的长,则;
    (2)分多钟情况进行讨论:①当点C在第二象限内,时;②当点C在第二象限内,时;③当点C在第四象限内,时.
    【详解】解:(1)①证明:如图1,
    ∵,∴.
    ∴,∴.
    而,
    ∴.
    ∵,∴.
    ∴,
    ∴.
    ②如图1,过点A作于点H.由题意可知,
    在中,.设,.
    ∵,∴,解得.
    ∴.
    ∵,
    ∴,

    ∴.
    ∵,
    ∴,
    ∴,

    ∴.
    (2)过点A作于点H,则有.
    ①如图2,当点C在第二象限内,时,设
    ∵,∴.
    又∵,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,∴,
    ∴,整理得,解得.
    ∴.
    ②如图3,当点C在第二象限内,时,延长交于点G,
    则,∴.
    又∵,
    ∴,
    而,
    ∴,

    ③当点C在第四象限内,时,与相交于点E,则有.
    (a)如图4,点B在第三象限内.
    在中,,∴
    ∴,
    又∵,
    ∴,

    ∴,

    ∴,
    ∴,

    (b)如图5,点B在第一象限内.
    在中
    ∴,∴.
    又∵,

    而,∴

    ∴,
    ∴,

    综上所述,的长为,4,9,1.
    【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.
    12.(1)①证明见解析,②1;(2)不改变,见解析
    【分析】(1)①计算得出,利用平行四边形的判定方法即可证明结论;
    ②证明,利用反比例函数的几何意义求得,即可求解;
    (2)点的坐标为,点的坐标为,可知四边形是平行四边形,由,利用相似三角形的性质得到关于的一元二次方程,利用三角形的面积公式即可求解.
    【详解】(1)①证明:设点的坐标为,
    则当时,点的坐标为,

    轴,

    ∴四边形是平行四边形;
    ②解:过点作轴于点,
    轴,



    ∴当时,则,即.

    (2)解 不改变.
    理由如下:
    过点作轴于点与轴交于点,
    设点的坐标为,点的坐标为,
    则,OH=b,
    由题意,可知四边形是平行四边形,
    ∴OG=AE=a,∠HPG=∠OEG=∠EOA,且∠PHG=∠OEA=90°,
    ∴,

    即,
    ∴,

    解得,
    异号,,


    ∴对于确定的实数,动点在运动过程中,的面积不会发生变化.

    【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,相似三角形的判定和性质,解一元二次方程,解题的关键是学会利用参数构建方程解决问题.

    相关试卷

    中考数学二轮复习核心考点专题专题26反比例函数与几何综合题型归纳含解析答案:

    这是一份中考数学二轮复习核心考点专题专题26反比例函数与几何综合题型归纳含解析答案,共76页。试卷主要包含了如图,矩形的边,,动点在边上等内容,欢迎下载使用。

    中考数学二轮复习核心考点专题专题24锐角三角函数与几何图形的综合含解析答案:

    这是一份中考数学二轮复习核心考点专题专题24锐角三角函数与几何图形的综合含解析答案,共28页。试卷主要包含了如图,点O是正方形的中心,,如图,在Rt中,,,【问题背景】等内容,欢迎下载使用。

    中考数学二轮复习核心考点专题专题23二次函数抛物线与三角形的综合含解析答案:

    这是一份中考数学二轮复习核心考点专题专题23二次函数抛物线与三角形的综合含解析答案,共40页。试卷主要包含了综合与探究,已知抛物线,已知,在平面直角坐标系中,抛物线等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学二轮复习专题23函数与几何综合含解析答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map