所属成套资源:中考数学二轮复习专项试题含解析答案
中考数学二轮复习专题23函数与几何综合含解析答案
展开这是一份中考数学二轮复习专题23函数与几何综合含解析答案,共28页。
1.一次函数y=kx+b(k≠0)的图像与反比例函数的图象相交于A(2,3),B(6,n)两点
(1)求一次函数的解析式
(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求的值
2.如图,在平面直角坐标系中,矩形的两边、分别在坐标轴上,且,,连接.反比例函数()的图象经过线段的中点,并与、分别交于点、.一次函数的图象经过、两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点是轴上一动点,当的值最小时,点的坐标为______.
3.如图,一次函数的图象与轴的正半轴交于点,与反比例函数的图像交于两点.以为边作正方形,点落在轴的负半轴上,已知的面积与的面积之比为.
(1)求一次函数的表达式:
(2)求点的坐标及外接圆半径的长.
4.如图,反比例函数上的图象与一次函数的图象相交于,两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线交y轴于点C,点是正半轴上的一个动点,过点N作轴交反比例函数的图象于点M,连接,.若,求t的取值范围.
5.如图所示,在平面直角坐标系中,一次函数的图像与函数的图像(记为)交于点A,过点A作轴于点,且,点在线段上(不含端点),且,过点作直线轴,交于点,交图像于点.
(1)求的值,并且用含的式子表示点的横坐标;
(2)连接、、,记、的面积分别为、,设,求的最大值.
6.如图,点P为函数与函数图象的交点,点P的纵坐标为4,轴,垂足为点B.
(1)求m的值;
(2)点M是函数图象上一动点,过点M作于点D,若,求点M的坐标.
7.如图,在平面直角坐标系xOy中,反比例函数y(x>0)的图象经过点A(4,),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.
(1)m= ,点C的坐标为 ;
(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.
8.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.
(1)求反比例函数的解析式;
(2)求∠EOD的度数.
9.如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
(1)填空:k= ;
(2)求△BDF的面积;
(3)求证:四边形BDFG为平行四边形.
10.在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B,
(1)k的值是 ;
(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;
②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.
11.在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.
(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.
①若,求证:.
②若,求四边形的面积.
(2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由.
12.已知在平面直角坐标系中,点是反比例函数图象上的一个动点,连结的延长线交反比例函数的图象于点,过点作轴于点.
(1)如图1,过点作轴于点,连结.
①若,求证:四边形是平行四边形;
②连结,若,求的面积.
(2)如图2,过点作,交反比例函数的图象于点,连结.试探究:对于确定的实数,动点在运动过程中,的面积是否会发生变化?请说明理由.
评卷人
得分
一、解答题
评卷人
得分
二、证明题
参考答案:
1.(1)一次函数y=,(2).
【分析】(1)利用点A(2,3),求出反比例函数,求出 B(6,1),利用待定系数法求一次函数解析式;
(2)利用平移求出y=,联立,求出P(-6,-1),Q(-2,-3),在Rt△MON中,由勾股定理MN=,PQ=即可.
【详解】解:(1)∵反比例函数的图象过A(2,3),
∴m=6,
∴6n=6,
∴n=1,
∴B(6,1)
一次函数y=kx+b(k≠0)的图像与反比例函数的图象相交于A(2,3),B(6,1)两点,
∴,
解得,
一次函数y=,
(2)直线AB沿y轴向下平移8个单位后得到直线l,得y=,
当y=0时,,,当x=0时,y=-4,
∴M(-8,0),N(0,-4),
,
消去y得,
解得,
解得,,
∴P(-6,-1),Q(-2,-3),
在Rt△MON中,
∴MN=,
∴PQ=,
∴.
【点睛】本题考查待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理,掌握待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理是解题关键.
2.(1), ;(2)
【分析】(1)先求出B点的坐标,再由反比例函数过点,求出点的坐标,代入即可,
由矩形的性质可得、坐标,代入即可求出解析式;
(2)“将军饮马问题”,作关于轴的对称点,连接,直线与轴交点即为所求.
【详解】(1) 四边形是矩形,,
为线段的中点
将代入,得
将,代入,得:
,解得
(2)如图:作关于轴的对称点,连接交轴于点P
当三点共线时,有最小值
,
设直线的解析式为
将,代入,得
,解得
令,得
【点睛】本题考查了矩形的性质,反比例函数性质,反比例函数和一次函数待定系数法求解析式,反比例函数图像上点的特点,线段和距离最值问题,正确的作辅助线,理解并记忆待定系数法求解的技巧是解题关键.
3.(1);(2)点的坐标为;外接圆半径的长为
【分析】(1)过D点作DE∥y轴交x轴于H点,过A点作EF∥x轴交DE于E点,过B作BF∥y轴交EF于F点,证明△ABF≌△DAE,,的面积与的面积之比为得到,进而得到,求出A、D两点坐标即可求解;
(2)联立一次函数与反比例函数解析式即可求出P点坐标;再求出C点坐标,进而求出CP长度,Rt△CPD外接圆的半径即为CP的一半.
【详解】解:(1)过D点作DE∥y轴交x轴于H点,过A点作EF∥x轴交DE于E点,过B作BF∥y轴交EF于F点,如下图所示:
∵与有公共的底边BO,其面积之比为1:4,
∴DH:OA=1:4,
设,则,
∵ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAF+∠EAD=90°,
∵∠BAF+∠FBA=90°,
∴∠FBA=∠EAD,
在△ABF和△DAE中: ,
∴△ABF≌△DAE(AAS),
∴
又,
∴,解得(负值舍去),
∴,代入中,
∴ ,解得 ,
∴一次函数的表达式为;
(2)联立一次函数与反比例函数解析式: ,
整理得到:,
解得 ,,
∴点的坐标为;D点的坐标为(4,1)
∵四边形ABCD为正方形,
∴,
且,
在中,由勾股定理:,
∴,
又△CPD为直角三角形,其外接圆的圆心位于斜边PC的中点处,
∴△CPD外接圆的半径为.
【点睛】本题考查了反比例函数与一次函数的综合应用,三角形全等的判定与性质,勾股定理求线段长,本题属于综合题,解题的关键是正确求出点A、D两点坐标.
4.(1),;(2).
【分析】(1)先根据点的坐标,利用待定系数法可得反比例函数的解析,从而可得点的坐标,再根据点的坐标,利用待定系数法可得一次函数的解析式;
(2)先根据一次函数的解析式求出点的坐标,根据反比例函数的解析式求出点的坐标,再根据建立不等式,解不等式即可得.
【详解】解:(1)将点代入得:,
则反比例函数的解析式为;
当时,,解得,即,
将点代入得:,解得,
则一次函数的解析式为;
(2)对于一次函数,
当时,,即,
,
轴,且,
,,
,
,
,
解得.
【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法是解题关键.
5.(1),D点横坐标为;(2)
【分析】(1)先求出A点坐标,再利用待定系数法即可求出k的值,利用OC=t和D点在直线l上即可得到D点横坐标;
(2)分别用含t的式子表示出、,得到关于t的二次函数,求函数的最大值即可.
【详解】解:(1)∵,
∴A点横坐标为1,
∵A点在一次函数的图像上,
∴,
∴,
∵A点也在反比例函数图像上,
∴,
∴反比例函数解析式为:,
∵,直线轴,
∴D点纵坐标为t,
∵D点在直线l上,
∴D点横坐标为,
综上可得:,D点横坐标为.
(2)直线轴,交于点,交图像于点,
∴E点纵坐标为t,
将纵坐标t代入反比例函数解析式中得到E点坐标为,
∴,A点到DE的距离为,
∴,
∵轴于点,
∴,
∴,
∴,
∴当时,最大=;
∴的最大值为.
【点睛】本题综合考查了反比例函数和一次函数,涉及到了用待定系数法求函数解析式、用点的坐标表示线段的长、平面直角坐标系中三角形的面积表示、平行于x轴的直线上的点的坐标特征等内容,本题综合性较强,要求学生对概念的理解和掌握应做到深刻与扎实,本题蕴含了数形结合的思想方法等.
6.(1)24;(2)M点的坐标为
【分析】(1)根据交点坐标的意义,求得点P的横坐标,利用k=xy计算m即可;
(2)利用分类思想,根据正切的定义,建立等式求解即可.
【详解】解:(1)∵点P纵坐标为4,
∴,解得,
∴,
∴.
(2)∵,
∴,
设,则,
当M点在P点右侧,
∴M点的坐标为,
∴(6+2t)(4-t)=24,
解得:,(舍去),
当时,,
∴M点的坐标为,
当M点在P点的左侧,
∴M点的坐标为,
∴(6-2t)(4+t)=24,
解得:,,均舍去.
综上,M点的坐标为.
【点睛】本题考查了一次函数与反比例函数的交点问题,反比例函数解析式的确定,三角函数,一元二次方程的解法,熟练掌握函数图像交点的意义,灵活运用三角函数的定义,构造一元二次方程并准确解答是解题的关键.
7.(1)6,(2,0)
(2)
【分析】(1)将A点坐标代入反比例函数解析式,即可求出m的值;根据题意结合中点坐标公式即可求出C点的坐标;
(2)设直线AB的解析式为y=kx+b,利用待定系数法即可求出直线AB的解析式为yx,故可设D(x,x)(),则E(x,),再根据三角形面积公式即可用m表示出S△ODE,最后根据二次函数的性质即可求出其最大值.
(1)
∵反比例函数y(x>0)的图象经过点A(4,),
∴m6,
∵AB交x轴于点C,C为线段AB的中点,B点在y轴上.
∴,
∴C(2,0);
故答案为6,(2,0);
(2)
设直线AB的解析式为y=kx+b,
把A(4,),C(2,0)代入得,
解得,
∴直线AB的解析式为yx;
∵点D为线段AB上的一个动点,
∴设D(x,x)(),
∵DE∥y轴,
∴E(x,),
∴S△ODEx•x2x+3( x-1)2,
∵,
∴当x=1时,△ODE的面积最大值为.
【点睛】本题为反比函数与一次函数的综合,反比例函数与三角形的综合,考查利用待定系数法求函数解析式,中点坐标公式以及二次函数的应用.利用数形结合的思想是解答本题的关键.
8.(1)y
(2)15°
【分析】(1)根据题意易证△AOD是等腰直角三角形,再根据勾股定理即可求出,即得出A点坐标,最后将A点坐标代入反比例函数解析式,求出k的值即可;
(2)根据题意易证OA=AE,再根据直角三角形斜边中线等于斜边一半,即可推出CE=AE=BE,即可根据等腰三角形的性质得出∠AOE=∠AEO,∠ECB=∠EBC,再根据三角形外角性质得出∠AEO=∠ECB+∠EBC=2∠EBC,最后根据平行线的性质可得出∠EOD=∠ECB,即得出∠AOE=2∠EOD,即可求出∠EOD的大小.
【详解】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,
∴△AOD是等腰直角三角形,
∵,
∴,
∴A(2,2),
∵顶点A在反比例函数y(x>0)的图象上,
∴,
解得:k=4,
∴反比例函数的解析式为y;
(2)∵AB=2OA,点E恰为AB的中点,
∴OA=AE,
∵Rt△ABC中,∠ACB=90°,
∴CE=AE=BE,
∴∠AOE=∠AEO,∠ECB=∠EBC,
∴∠AEO=∠ECB+∠EBC=2∠EBC,
∵轴,
∴∠EOD=∠ECB,
∴∠AOE=2∠EOD,
∵∠AOD=45°,
∴∠EOD=15°.
【点睛】本题为反比例函数与三角形的综合题,考查等腰直角三角形的判定和性质,勾股定理,利用待定系数法求函数解析式,直角三角形的性质,三角形外角的性质以及平行线的性质.综合性强,利用数形结合的思想是解答本题的关键.
9.(1)2;(2)3;(3)证明见解析.
【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;
(2)△BDF的面积=△OBD的面积=S△BOA-S△OAD,即可求解;
(3)确定直线DE的表达式为:y=-,令y=0,则x=5m,故点F(5m,0),即可求解.
【详解】解:(1)设点B(s,t),st=8,则点M(s,t),
则k=s•t=st=2,
故答案为2;
(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;
(3)设点D(m,),则点B(4m,),
∵点G与点O关于点C对称,故点G(8m,0),
则点E(4m,),
设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,
故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),
故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,
则FG∥BD,故四边形BDFG为平行四边形.
【点睛】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.
10.(1);(2)①8+4;②点C的坐标为(﹣3,)或(11,).
【分析】(1)根据点A的坐标,利用待定系数法可求出k值;
(2)①利用一次函数图像上点的坐标特征可得出点B的坐标,由平行四边形的性质结合点E为OB的中点可得出CE是△ABO的中位线,结合点A的坐标可得出CE的长,在Rt△DOE中,利用勾股定理可求出DE的长,再利用平行四边形的周长公式即可求出的周长;
②设点C的坐标为(x,x +4),则CE=|x|,CD=|x+4|,利用三角形的面积公式结合△CDE的面积为,可得出关于x的方程,解之即可得出结论.
【详解】解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,
解得:k=.故答案为.
(2)①由(1)可知直线AB的解析式为y=x+4.
当x=0时,y=x+4=4,∴点B的坐标为(0,4),
∴OB=4.
∵点E为OB的中点,∴BE=OE=OB=2.
∵点A的坐标为(8,0),∴OA=8.
∵四边形OCED是平行四边形,
∴CE∥DA,
∴,∴BC=AC,
∴CE是△ABO的中位线,∴CE=OA=4.
∵四边形OCED是平行四边形,
∴OD=CE=4,OC=DE.
在Rt△DOE中,∠DOE=90°,OD=4,OE=2,
∴DE=,
∴=2(OD+DE)=2(4+2)=8+4.
②如图,设点C的坐标为(x,x +4),则CE=|x|,CD=|x+4|,
∴S△CDE=CD•CE=|﹣x2+2x|=,
∴x2+8x+33=0或x2+8x﹣33=0.
方程x2+8x+33=0无解;
解方程x2+8x﹣33=0,
解得:x1=﹣3,x2=11,
∴点C的坐标为(﹣3,)或(11,).
【点睛】本题考查了待定系数法求一次函数解析式、一次函数图像上点的坐标特征、平行四边形的性质、勾股定理、平行四边形的周长、三角形的面积、解一元二次方程以及三角形的中位线,解题的关键是:(1)根据点的坐标,利用待定系数法求出k值;(2)①利用勾股定理及三角形中位线的性质,求出CE、DE的长;②利用三角形的面积公式结合△CDE的面积为,找出关于x的方程.
11.(1)①见解析;②;(2)存在,,4,9,1
【分析】(1)①等腰三角形等角对等边,则,根据等角的余角相等和对顶角相等,得到,根据等角对等边,即可证明;
②添加辅助线,过点A作于点H,根据直线l的解析式和角的关系,分别求出线段AB、BC、OB、OC的长,则;
(2)分多钟情况进行讨论:①当点C在第二象限内,时;②当点C在第二象限内,时;③当点C在第四象限内,时.
【详解】解:(1)①证明:如图1,
∵,∴.
∴,∴.
而,
∴.
∵,∴.
∴,
∴.
②如图1,过点A作于点H.由题意可知,
在中,.设,.
∵,∴,解得.
∴.
∵,
∴,
∴
∴.
∵,
∴,
∴,
:
∴.
(2)过点A作于点H,则有.
①如图2,当点C在第二象限内,时,设
∵,∴.
又∵,
∴.
∵,
∴,
∴,
∴,∴,
∴,整理得,解得.
∴.
②如图3,当点C在第二象限内,时,延长交于点G,
则,∴.
又∵,
∴,
而,
∴,
∴
③当点C在第四象限内,时,与相交于点E,则有.
(a)如图4,点B在第三象限内.
在中,,∴
∴,
又∵,
∴,
而
∴,
∴
∴,
∴,
∴
(b)如图5,点B在第一象限内.
在中
∴,∴.
又∵,
∴
而,∴
∴
∴,
∴,
∴
综上所述,的长为,4,9,1.
【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.
12.(1)①证明见解析,②1;(2)不改变,见解析
【分析】(1)①计算得出,利用平行四边形的判定方法即可证明结论;
②证明,利用反比例函数的几何意义求得,即可求解;
(2)点的坐标为,点的坐标为,可知四边形是平行四边形,由,利用相似三角形的性质得到关于的一元二次方程,利用三角形的面积公式即可求解.
【详解】(1)①证明:设点的坐标为,
则当时,点的坐标为,
,
轴,
,
∴四边形是平行四边形;
②解:过点作轴于点,
轴,
,
,
,
∴当时,则,即.
;
(2)解 不改变.
理由如下:
过点作轴于点与轴交于点,
设点的坐标为,点的坐标为,
则,OH=b,
由题意,可知四边形是平行四边形,
∴OG=AE=a,∠HPG=∠OEG=∠EOA,且∠PHG=∠OEA=90°,
∴,
,
即,
∴,
,
解得,
异号,,
,
.
∴对于确定的实数,动点在运动过程中,的面积不会发生变化.
.
【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,相似三角形的判定和性质,解一元二次方程,解题的关键是学会利用参数构建方程解决问题.
相关试卷
这是一份中考数学二轮复习核心考点专题专题26反比例函数与几何综合题型归纳含解析答案,共76页。试卷主要包含了如图,矩形的边,,动点在边上等内容,欢迎下载使用。
这是一份中考数学二轮复习核心考点专题专题24锐角三角函数与几何图形的综合含解析答案,共28页。试卷主要包含了如图,点O是正方形的中心,,如图,在Rt中,,,【问题背景】等内容,欢迎下载使用。
这是一份中考数学二轮复习核心考点专题专题23二次函数抛物线与三角形的综合含解析答案,共40页。试卷主要包含了综合与探究,已知抛物线,已知,在平面直角坐标系中,抛物线等内容,欢迎下载使用。