所属成套资源:中考数学二轮复习数学模型含解析答案
中考数学二轮复习数学模型-角平分线常见解题模型含解析答案
展开
这是一份中考数学二轮复习数学模型-角平分线常见解题模型含解析答案,共8页。试卷主要包含了如图,已知,平分,,则等内容,欢迎下载使用。
数学模型-角平分线常见解题模型
学校:___________姓名:___________班级:___________考号:___________
评卷人
得分
一、单选题
1.如图,直线AB,CD相交于点O,射线OM平分,,若,则的度数为( )
A.
B.
C.
D.
2.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )
A.1° B.2° C.4° D.8°
3.如图,已知,平分,,则( )
A.105° B.120° C.130° D.150°
4.如图,△ABC中,BD是 ∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º, ∠BDC=95º,则∠BED的度数是( )
A.35° B.70° C.110° D.130°
5.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=( )
A.105° B.115° C.125° D.135°
6.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论有( )
A.①②④ B.①③④ C.①②③ D.①②③④
7.长方形如图折叠,D点折叠到的位置,已知∠FC=40°,则∠EFC=( )
A.120° B.110° C.105° D.115°
评卷人
得分
二、填空题
8.如图,点O是直线AD上一点,射线OC,OE分别平分∠AOB、∠BOD.若∠AOC=28°,则∠BOE= .
9.如图,直线 AB ,CD 相交于点O ,若∠EOC :∠EOD=4 :5 ,OA平分∠EOC ,则∠BOE= .
10.如图,,OC是的平分线,是的平分线,是的平分线……是的平分线,则的度数为 .
11.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC= .
12.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为 cm.
13.如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于 .
14.如图,在矩形中,,,点为边上的一个动点、过点作交边于点,把线段绕点旋转至(点与点对应),点落在线段上,若恰好平分,则的长为 .
15.如图,如图, ,平分,直尺与垂直,则∠1等于 .
16.如图,AB∥CD,PE平分∠BEF,PF平分∠DFE,若EF=13,PE=12,PF=5.点P到EF的距离为 .
17.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .
18.如图,在中,,和的平分线交于点,得;和的平分线交于点,得和的平分线交于点,则 度.
19.如图,,的平分线相交于点,的平分线相交于点,,的平分线相交于点……以此类推,则的度数是 (用含与的代数式表示).
20.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F= .
21.如图,在中,、分别是的高和角平分线,,,则 度.
22.如图,在△ABC中,∠B = 60°,∠C = 40°,AE平分∠BAC,AD⊥BC,垂足为点D,那么∠DAE = 度.
23.如图,将长方形纸片的沿折叠(点在上,不与点,重合),使点落在长方形内部点处,若平分,则的度数是 .
24.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD= .
25.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是 .
26.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是 °.
27.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且在内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为 (用含n的代数式表示).
28.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=4,△ABC的面积是 .
29.如图,△ABC中,∠BAC=90°,∠B=30°,BC边上有一点P(不与点B,C重合),I为△APC的内心,若∠AIC的取值范围为m°<∠AIC<n°,则m+n= .
评卷人
得分
三、解答题
30.已知:直线,点P是直线BD上不与点B重合的一点,连接AP,.
(1)如图1,当点P在射线BD上时,若,,则___________.
(2)如图2,当点P在射线BE上时,若,求的度数;
(3)若点P是直线BD上不与点B重合的一点,当,,时,请直接用含的代数式表示的度数.
31.如图1所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.
探究:
(1)观察“箭头四角形”,试探究与∠A、∠B、∠C之间的关系,并说明理由;
应用:
(2)请你直接利用以上结论,解决以下两个问题:
①如图2,把一块三角尺XYZ放置在上,使三角尺的两条直角边、恰好经过点、,若,则 ;
②如图3,、的2等分线(即角平分线)、相交于点,若,,求的度数;
拓展:
(3)如图4,,分别是、的2020等分线(),它们的交点从上到下依次为、、、…、.已知,,则 度.
32.如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA=28°,求∠ABE的大小.
33.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.
(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;
(2)如图2,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.
34.如图,在△OBC中,边BC的垂直平分线交∠BOC的平分线于点D,连接DB,DC,过点D作DF⊥OC于点F.
(1)若∠BOC=60°,求∠BDC的度数;
(2)若∠BOC=,则∠BDC= ;(直接写出结果)
(3)直接写出OB,OC,OF之间的数量关系.
35.如图,四边形ABCD中,AD∥BC,点E在CD上,EA,EB分别平分∠DAB和∠CBA,设AD=x,BC=y且(x﹣3)2+|y﹣4|=0.求AB的长.
36.如图,已知:在△ABC中,AD平分∠BAC,AB=AD,CE⊥AD,交AD的延长线于E.求证:AB+AC=2AE.
37.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.
(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
38.如图,在中,,,平分,于,交于.求证:(1);(2).
39.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究1:如图l,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90+∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线
∴∠1=∠ABC, ∠2=∠ACB
∴∠l+∠2=(∠ABC+∠ACB)= (180-∠A)= 90-∠A
∴∠BOC=180-(∠1+∠2) =180-(90-∠A)=90+∠A
(1)探究2;如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)
(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)
40.(1)如图(a),平分,平分.
①当时,求的度数.
②猜想与有什么数量关系?并证明你的结论.
(2)如图(b),平分外角,平分外角,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).
41.(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70∘,则∠BPC=_______度;
(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A的数量关系?并说明理由.
(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D=α.,直接写出∠BPC与α的数量关系;
42.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
(1)如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,试证明∠BOC=90°+
(2)如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(3)如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)
43.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求:∠DAC和∠BOA的度数.
44.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数.
45.已知:PA、PB、CD分别切⊙O于A、B、E三点,PA=6.求:
(1)△PCD的周长;
(2)若∠P=50°,求∠COD的度数.
46.如图,AB是直径,分别过上点B,C的切线,且,连接AC.求的度数.
47.如图,在中,,点为上一点,以点为圆心,为半径的与相切于点,交的延长线于点.证明:∠AOE=∠BAE.
48.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.
(1)求证:四边形ACBP是菱形;
(2)若⊙O半径为1,求菱形ACBP的面积.
49.已知:如图,、是的切线,切点分别是、,为上一点,过点作的切线,交、于、点,已知,求的周长.
50.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,与的三边分别相切于点则叫做的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,与四边形ABCD的边AB,BC,CD,DA分别相切于点则四边形叫做的外切四边形.
(1)如图2,试探究圆外切四边形的两组对边与之间的数量关系,猜想: (横线上填“>”,“
相关试卷
这是一份中考数学二轮复习数学模型-线段求最值模型含解析答案,共8页。
这是一份中考数学二轮复习数学模型-----手拉手含解析答案,共8页。试卷主要包含了【发现问题】,已知等内容,欢迎下载使用。
这是一份中考数学二轮复习数学模型-三垂直模型含解析答案,共8页。