四川省宜宾市叙州区第一中学2023-2024学年高三数学(文)上学期10月月考试题(Word版附解析)
展开第I卷 选择题(60分)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知全集,集合满足,则( )
A. B. C. D.
【答案】D
【解析】
【分析】根据补集定义求出集合,再判断即可.
【详解】因为,且,
所以,
所以,,,.
故选:D
2. 已知复数,则( )
A. B. C. 2D.
【答案】A
【解析】
【分析】根据题意得到,结合复数模的计算公式,即可求解.
【详解】由复数,可得,所以.
故选:A.
3. 若函数,则( )
A. B. C. D.
【答案】C
【解析】
【分析】根据函数的解析式由内到外可计算得出的值.
【详解】由题意可得,则.
故选:C.
4. 函数在上的图象大致为( )
A. B.
C. D.
【答案】C
【解析】
【分析】根据函数的奇偶性,结合特殊值,即可排除选项.
【详解】首先,所以函数是奇函数,故排除D,,故排除B,
当时,,故排除A,只有C满足条件.
故选:C
5. 已知函数,,则的值为( )
A. 1B. 0C. D.
【答案】B
【解析】
【分析】构造函数,判断函数为奇函数,即得解.
【详解】解:构造函数,则,故函数为奇函数.
又,∴,∴.
故选:B
6. 若,则( )
A. B. C. D.
【答案】C
【解析】
【分析】利用诱导公式化简已知条件,可求得的值,再将所求利用二倍角正弦公式展开,然后借助平方关系将其转化为分式齐次式,最后利用商数关系化简即可求解.
详解】解:∵,
∴,
∴,
∴,
故选:C.
7. 现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若是的导函数,是的导函数,则曲线在点处的曲率.函数的图象在处的曲率为( )
A. B. C. D.
【答案】D
【解析】
【分析】求出、,代值计算可得出函数的图象在处的曲率.
【详解】因为,所以,,
所以,,
所以.
故选:D.
8. 若,则( )
A. B. C. D. 1
【答案】C
【解析】
【分析】将用替换后,解方程解出即可.
【详解】因为,
可得,
可得,
解得,因为,所以,
所以,
所以.
故选:C
9. 已知函数,则( )
A.
B. 函数有一个零点
C. 函数是偶函数
D. 函数的图象关于点对称
【答案】D
【解析】
【分析】根据题意,判断函数的单调性,结合单调性性质判断A,由指数函数的性质可得,结合零点定义判断B,举反例判断C,证明,由此可得函数的对称性,判断D,综合可得答案.
【详解】函数的定义域为,
对于A,函数,
函数在R上为增函数,易得在R上为增函数,
则有,A错误;
对于B,,有,则有,
所以没有零点,B错误;
对于C,,,
所以,不是偶函数,C错误;
对于D,因为,
所以
所以,
所以函数的图象关于点对称,D正确;
故选:D.
10. 如图,四边形为矩形,下底面宽丈,长丈,上棱丈,与平面平行.与平面的距离为1丈,则它的体积是( )
A. 4立方丈B. 5立方丈C. 6立方丈D. 8立方丈
【答案】B
【解析】
【分析】过作平面,垂足为,过作平面,垂足为,过作,交于,交于,过作,交于,交于,则它的体积,由此能求出结果.
【详解】解:过作平面,垂足为,过作平面,垂足为,
过作,交于,交于,过作,交于,交于,
则它的体积:
(立方丈).
故选:.
11. 将的图象横坐标伸长为原来的2倍,再向右平移个单位长度,得到的图象,若在上单调递增,则正数的取值范围为( )
A. B. C. D.
【答案】B
【解析】
【分析】利用三角函数图象的变换规律求得的解析式,进而得的解析式,再利用三角函数的单调性求得的范围.
【详解】将的图象横坐标伸长为原来的2倍,得到的图象,
再向右平移个单位长度,得到的图象.
,
由,,
得,
∴的增区间为,
若在上单调递增,则,
∴且,∴且,
又,∴当时,,
故答案为:B.
12. 已知,,,则的大小关系为( )
A. B. C. D.
【答案】B
【解析】
【分析】分别构造和,求导判断出在上的单调性,比较出函数值与端点值的大小关系,进而得出的大小关系.
【详解】令,
则恒成立,即在上单调递增,且,
故,取,则,即,
可得,即;
令,
则恒成立,即在上单调递减,且,
故,取,则,即,
可得,即;
综上可得:的大小关系为
故选:B
第II卷 非选择题
二、填空题:本题共4小题,每小题5分,共20分
13. 已知实数,满足约束条件则的最大值是______.
【答案】7
【解析】
【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数即可得解.
【详解】如图,画出可行域,设则,直线经过点时,取得最大值,
联立可得,此时最大值是7.
故答案为:7.
14. 已知角的顶点为坐标原点,始边与x轴的非负半轴重合,点在角的终边上,则______.
【答案】##
【解析】
【分析】根据三角函数的定义和二倍角公式可得答案.
【详解】根据三角函数的定义可知,,
由二倍角公式得.
故答案为:.
15. 在上单调递减,则实数m的最大值是______.
【答案】##
【解析】
【分析】利用二倍角公式及辅助角公式化简函数,求出含有数0的单调递减区间,再借助集合的包含关系求解作答.
【详解】依题意,,
由得,因此,函数含有数0的单调递减区间是,
因在上单调递减,于是得,即,解得,
所以实数m的最大值是.
故答案为:
16. 若存在,使得,则的取值范围是__________.
【答案】
【解析】
【分析】首先注意到,故考虑切线放缩,从而,所以,考虑取等条件是否成立即可.
【详解】不妨设,求导得,
而在上单调递增,且,
所以当时,,此时单调递减,
当时,,此时单调递增,
所以,
所以等号成立当且仅当,
注意到,
所以考虑切线放缩有,
从而,
又,所以,
由以上分析可知不等式取等,当且仅当,,
接下来考虑是否成立:
不妨设,则,即单调递增,
注意到,
所以由零点存在定理可知,使得.
综上所述:若存在,使得,则只需,从而的取值范围是.
故答案为:.
【点睛】关键点点睛:解决问题关键是考虑切线放缩,从而,另一个关键的地方是证明是否成立,从而即可顺利求解.
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分.
17. 将函数的图象向左平移个单位长度后得到函数的图象.
(1)若为奇函数,求的值;
(2)若在上单调递减,求的取值范围.
【答案】(1)或或;
(2).
【解析】
【分析】(1)利用倍角公式、辅助角公式化简函数式再平移得,结合奇偶性计算即可;
(2)利用三角函数的单调性计算即可.
【小问1详解】
易知,
向左平移个单位长度得,
因为为奇函数,所以,
故,
因为,所以或或;
【小问2详解】
由(1)知,
,
则由题意可知,
结合,取时分别得,,
即.
18. 在△ABC中,角A,B,C所对的边分别为a,b,c,且.
(1)求;
(2)已知,,求△ABC的面积.
【答案】(1)
(2)
【解析】
【分析】(1)利用平面向量的数量积的定义结合余弦定理即可求出结果;
(2)由正弦边角关系得,,结合求值,应用正弦定理求,进而求出三角形的面积.
【小问1详解】
由已知,
所以,
结合余弦定理,,
化简得:,所以.
【小问2详解】
由正弦定理知,即,又,所以,
显然,即,故,
由,
又,则,
所以的面积.
19. 设为实数,函数,.
(1)求的极值;
(2)对于,,都有,试求实数的取值范围.
【答案】(1)极小值为,无极大值.
(2)
【解析】
【分析】(1)由导数得出函数的单调性,进而得出极值;
(2)由导数得出,的值域,由的值域是的值域的子集得出实数的取值范围.
【小问1详解】
,当时,;当时,;
即函数在上单调递减,在上单调递增;
函数的极小值为,无极大值.
【小问2详解】
由(1)可知,函数在上单调递增,则.
,,当时,;当时,;
即函数在上单调递减,在上单调递增;
因为,所以,.
即.
因为,,都有,
所以的值域是的值域的子集.
即,解得.
即实数的取值范围为.
20. 如图,在直四棱柱中,底面为菱形,,,,分别为,的中点.
(1)求证:平面平面;
(2)若,求点到平面的距离.
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)根据题意,先根据线面垂直的判定定理可得平面,然后根据面面垂直的判定定理即可得到结果.
(2)根据题意,将点到平面的距离转化为三棱锥的高,然后根据等体积法即可得到结果.
【小问1详解】
因为为菱形,,所以为等边三角形,且,分别为,的中点,则,
又因为为直四棱柱,则平面,且平面,则,且
所以平面,又因为平面,所以平面平面.
【小问2详解】
因为直四棱柱,,,分别为,的中点,
所以,,
,,,
因为底面为菱形,,所以,,
由(1)知平面,设点到平面的距离为,则,
因为,所以,因为,因为,,,
所以,设点到平面的距离为,
因为,所以,因此.
故点到平面的距离为.
21 设函数.
(1)求函数的单调区间;
(2)若关于x的方程有两个不相等的实数根、,当时,证明:.(注:…是自然对数的底数)
【答案】(1)单调递减区间为,单调递增区间为
(2)证明见解析
【解析】
【分析】(1)先求定义域,再求导函数,利用导函数的正负求解的单调区间;(2)结合第一问,利用放缩法和分析法及函数的单调性进行证明.
【小问1详解】
函数的定义域为,因为
令,所以;,所以
所以的单调递减区间为,单调递增区间为;
【小问2详解】
由(1)知,,当时,,
于是,所以,要证:只要证:,
又在上单调递增
即证:即证:
由题意知,而,所以原命题得证.
【点睛】导函数处理多元不等式证明问题,要选择合适的方法,就本题需要先研究两个变量的大小关系,然后利用放缩法,结合函数的单调性进行证明.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第一题计分.
[选修 4-4:坐标系与参数方程]
22. 在平面直角坐标系xOy中,设曲线的参数方程为(t为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为.
(1)求曲线的普通方程;
(2)若曲线上恰有三个点到曲线的距离为,求实数a的值.
【答案】(1)
(2)
【解析】
【分析】(1)曲线的参数方程消去参数即可求出曲线的普通方程;
(2)首先曲线的极坐标方程转化为普通方程,可以得到曲线是圆,要使曲线上恰有三个点到曲线的距离为,圆心到直线的距离,求解方程即可.
【小问1详解】
由已知得代入,消去参数t得
曲线的普通方程为.
【小问2详解】
由曲线的极坐标方程得,
又,,,
所以,即,
所以曲线是圆心为,半径等于的圆.
因为曲线上恰有三个点到曲线的距离为,
所以圆心到直线的距离,
即,解得.
[选修 4-5:不等式选讲]
23. 设函数.
(1)解不等式;
(2)当x∈R,0
【解析】
【分析】
(1)去绝对值将函数转化为,然后分, 两种情况讨论求解.
(2)通过(1)得到,然后利用“1”的代换,利用基本不等式求得的最小值即可.
【详解】(1)由已知可得:,
当时,成立;
当时,,即,则.
∴的解集为.
(2)由(1)知,,
∵,则,
当且仅当,即时取等号,
则有.
四川省宜宾市叙州区第一中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附解析): 这是一份四川省宜宾市叙州区第一中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附解析),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省宜宾市叙州区第二中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附解析): 这是一份四川省宜宾市叙州区第二中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附解析),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省宜宾市叙州区第二中学2023-2024学年高三数学(文)上学期10月月考试题(Word版附解析): 这是一份四川省宜宾市叙州区第二中学2023-2024学年高三数学(文)上学期10月月考试题(Word版附解析),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。