终身会员
搜索
    上传资料 赚现金

    2024年数学高考大一轮复习第九章9.12 圆锥曲线中范围与最值问题

    立即下载
    加入资料篮
    2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题第1页
    2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题

    展开

    这是一份2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题,共4页。
    §9.12 圆锥曲线中范围与最值问题题型一 范围问题1 (2023·淄博模拟)已知F(0)是椭圆C1(a>b>0)的一个焦点,点M在椭圆C上.(1)求椭圆C的方程;(2)若直线l与椭圆C相交于AB两点,且kOAkOB=-(O为坐标原点),求直线l的斜率的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 (2022·济宁模拟)已知抛物线Ey22px(p>0)上一点C(1y0)到其焦点F的距离为2.(1)求实数p的值;(2)若过焦点F的动直线l与抛物线交于AB两点,过AB分别作抛物线的切线l1l2,且l1l2的交点为Ql1l2y轴的交点分别为MN.QMN面积的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二 最值问题2 (2022·苏州模拟)已知双曲线C1(a>0b>0)过点(21),渐近线方程为y±x,直线l是双曲线C右支的一条切线,且与C的渐近线交于AB两点.(1)求双曲线C的方程;(2)设点AB的中点为M,求点My轴的距离的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆锥曲线中最值的求法(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等. 跟踪训练2 (2023·临沂模拟)已知椭圆C1(a>0b>0)的左、右焦点分别为F1F2,离心率为,直线xC截得的线段长为.(1)C的方程;(2)AB为椭圆C上在x轴同侧的两点,且λ,求四边形ABF1F2面积的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

    相关试卷

    2024年高考数学第一轮复习讲义第九章9.12 圆锥曲线中范围与最值问题(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第九章9.12 圆锥曲线中范围与最值问题(学生版+解析),共13页。试卷主要包含了12 圆锥曲线中范围与最值问题等内容,欢迎下载使用。

    2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题:

    这是一份2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题,共3页。试卷主要包含了已知双曲线C,已知O为坐标原点,椭圆C,已知抛物线E等内容,欢迎下载使用。

    高考数学第一轮复习第九章 §9.10 圆锥曲线中范围与最值问题:

    这是一份高考数学第一轮复习第九章 §9.10 圆锥曲线中范围与最值问题,共12页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map