所属成套资源:2024年高考数学第一轮复习资料试卷
2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题
展开
这是一份2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题,共4页。
§9.12 圆锥曲线中范围与最值问题题型一 范围问题例1 (2023·淄博模拟)已知F(,0)是椭圆C:+=1(a>b>0)的一个焦点,点M在椭圆C上.(1)求椭圆C的方程;(2)若直线l与椭圆C相交于A,B两点,且kOA+kOB=-(O为坐标原点),求直线l的斜率的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 (2022·济宁模拟)已知抛物线E:y2=2px(p>0)上一点C(1,y0)到其焦点F的距离为2.(1)求实数p的值;(2)若过焦点F的动直线l与抛物线交于A,B两点,过A,B分别作抛物线的切线l1,l2,且l1,l2的交点为Q,l1,l2与y轴的交点分别为M,N.求△QMN面积的取值范围.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二 最值问题例2 (2022·苏州模拟)已知双曲线C:-=1(a>0,b>0)过点(2,1),渐近线方程为y=±x,直线l是双曲线C右支的一条切线,且与C的渐近线交于A,B两点.(1)求双曲线C的方程;(2)设点A,B的中点为M,求点M到y轴的距离的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆锥曲线中最值的求法(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等. 跟踪训练2 (2023·临沂模拟)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为,直线x=被C截得的线段长为.(1)求C的方程;(2)若A和B为椭圆C上在x轴同侧的两点,且=λ,求四边形ABF1F2面积的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
相关试卷
这是一份2024年高考数学第一轮复习讲义第九章9.12 圆锥曲线中范围与最值问题(学生版+解析),共13页。试卷主要包含了12 圆锥曲线中范围与最值问题等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第九章 §9.12 圆锥曲线中范围与最值问题,共3页。试卷主要包含了已知双曲线C,已知O为坐标原点,椭圆C,已知抛物线E等内容,欢迎下载使用。
这是一份高考数学第一轮复习第九章 §9.10 圆锥曲线中范围与最值问题,共12页。