2024年数学高考大一轮复习第八章 培优课 §8.9 空间动态问题突破
展开§8.9 空间动态问题突破
空间动态问题,是高考常考题型,常以客观题出现.常见题型有空间位置关系判定、轨迹问题、最值问题、范围问题等.
题型一 空间位置关系的判定
例1 (1)(2023·昆明模拟)已知P,Q分别是正方体ABCD-A1B1C1D1的棱BB1,CC1上的动点(不与顶点重合),则下列结论错误的是( )
A.AB⊥PQ
B.平面BPQ∥平面ADD1A1
C.四面体ABPQ的体积为定值
D.AP∥平面CDD1C1
听课记录:___________________________________________________________________
_____________________________________________________________________________
(2)已知等边△ABC的边长为6,M,N分别为边AB,AC的中点,将△AMN沿MN折起至△A′MN,在四棱锥A′-MNCB中,下列说法正确的是( )
①直线MN∥平面A′BC;
②当四棱锥A′-MNCB体积最大时,平面A′MN⊥平面MNCB;
③在折起过程中存在某个位置使BN⊥平面A′NC;
④当四棱锥A′-MNCB体积最大时,它的各顶点都在球O的球面上,则球O的表面积为.
A.①② B.①③ C.②③ D.③④
听课记录:____________________________________________________________________
______________________________________________________________________________
思维升华 解决空间位置关系的动点问题
(1)应用“位置关系定理”转化.
(2)建立“坐标系”计算.
跟踪训练1 (2022·杭州质检)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列结论一定成立的是( )
A.三棱锥A-A1PD的体积大小与点P的位置有关
B.A1P与平面ACD1相交
C.平面PDB1⊥平面A1BC1
D.AP⊥D1C
题型二 轨迹问题
例2 (1)(2023·韶关模拟)设正方体ABCD-A1B1C1D1的棱长为1,P为底面正方形ABCD内的一动点,若△APC1的面积S=,则动点P的轨迹是( )
A.圆的一部分 B.双曲线的一部分
C.抛物线的一部分 D.椭圆的一部分
听课记录:____________________________________________________________________
______________________________________________________________________________
(2)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为AA1,AB的中点,M点是正方形ABB1A1内的动点,若C1M∥平面CD1EF,则M点的轨迹长度为________.
听课记录:____________________________________________________________________
______________________________________________________________________________
思维升华 解决与几何体有关的动点轨迹问题的方法
(1)几何法:根据平面的性质进行判定.
(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定,或用代替法进行计算.
(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.
跟踪训练2 (1)(2022·滨州模拟)如图,斜线段AB与平面α所成的角为,B为斜足.平面α上的动点P满足∠PAB=,则点P的轨迹为( )
A.圆 B.椭圆
C.双曲线的一部分 D.抛物线的一部分
(2)已知动点P在棱长为1的正方体ABCD-A1B1C1D1的表面上运动,且PA=r(0<r<),记点P的轨迹长度为f(r),则f(1)+f() =________.
题型三 最值、范围问题
例3 (1)如图所示,菱形ABCD的边长为2,现将△ACD沿对角线AC折起,使平面ACD′⊥平面ACB,则此时空间四面体ABCD′体积的最大值为( )
A. B. C.1 D.
听课记录:____________________________________________________________________
______________________________________________________________________________
(2)在三棱锥P-ABC中,PA,AB,AC两两垂直,D为棱PC上一动点,PA=AC=2,AB=3.当BD与平面PAC所成角最大时,AD与平面PBC所成角的正弦值为________.
听课记录:____________________________________________________________________
______________________________________________________________________________
思维升华 在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的思路是
(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值,即可求解.
(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.
跟踪训练3 (1)在四面体ABCD中,若AD=DB=AC=CB=1,则四面体ABCD体积的最大值是( )
A. B. C. D.
(2)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为B1C1,C1D1的中点,P是底面A1B1C1D1上一点.若AP∥平面BEF,则AP长度的最小值是________,最大值是________.
2024年高考数学第一轮复习讲义第八章培优课8.9 空间动态问题突破(学生版+解析): 这是一份2024年高考数学第一轮复习讲义第八章培优课8.9 空间动态问题突破(学生版+解析),共18页。试卷主要包含了9 空间动态问题突破等内容,欢迎下载使用。
2024年数学高考大一轮复习第八章 §8.9 空间动态问题突破[培优课]: 这是一份2024年数学高考大一轮复习第八章 §8.9 空间动态问题突破[培优课],共3页。
(新高考)高考数学一轮复习讲练测第7章§7.9空间动态问题突破[培优课](含解析): 这是一份(新高考)高考数学一轮复习讲练测第7章§7.9空间动态问题突破[培优课](含解析),共15页。