|试卷下载
搜索
    上传资料 赚现金
    新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析)01
    新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析)02
    新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析)03
    还剩7页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析)

    展开
    这是一份新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析),共10页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。

    课时跟踪检测(四十四) 椭圆
    一、基础练——练手感熟练度
    1.(多选)已知曲线C:mx2+ny2=1.(  )
    A.若m>n>0,则C是椭圆,其焦点在y轴上
    B.若m>n>0,则C是椭圆,其焦点在x轴上
    C.若m=n>0,则C是圆,其半径为
    D.若m=0,n>0,则C是两条直线
    解析:选AD ∵mx2+ny2=1,∴+=1,若m>n>0,∴0<<,∴C是椭圆,且焦点在y轴上,故A正确,B错误.若m=n>0,则x2+y2=,C是圆,半径为,C错误.若m=0,n>0,∴y2=,∴y=±,则C是两条直线,D正确.故选A、D.
    2.(2019·北京高考)已知椭圆+=1(a>b>0)的离心率为,则(  )
    A.a2=2b2        B.3a2=4b2
    C.a=2b D.3a=4b
    解析:选B 因为椭圆的离心率e==,
    所以a2=4c2.又a2=b2+c2,所以3a2=4b2.
    3.已知焦点在y轴上的椭圆 +=1的长轴长为8,则m=(  )
    A.4 B.8
    C.16 D.18
    解析:选C 椭圆的焦点在y轴上,则m=a2.由长轴长2a=8得a=4,所以m=16.故选C.
    4.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若△AF1B的周长为4,则C的方程为(  )
    A.+=1 B.+y2=1
    C.+=1 D.+=1
    解析:选A ∵△AF1B的周长为4,
    ∴由椭圆的定义可知4a=4,
    ∴a=,∵e==,∴c=1,
    ∴b2=a2-c2=2,∴C的方程为+=1,故选A.
    5.(2021年1月新高考八省联考卷)椭圆+=1(m>0)的焦点为F1,F2,上顶点为A,若∠F1AF2=,则m=(  )
    A.1 B.
    C. D.2
    解析:选C ∵c==1,b=m,由∠F1AF2=,得∠F1AO=,
    ∴tan∠F1AO==,解得m=,故选C.
    6.已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(  )
    A.1- B.2-
    C. D.-1
    解析:选D 由题设知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,所以|PF2|=c,|PF1|=c.由椭圆的定义得|PF1|+|PF2|=2a,即c+c=2a,所以(+1)c=2a,故椭圆C的离心率e===-1.故选D.

    二、综合练——练思维敏锐度
    1.椭圆以x轴和y轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的标准方程为(  )
    A.+y2=1 B.+=1
    C.+y2=1或+=1 D.+y2=1或+x2=1
    解析:选C 由题意知,椭圆的长轴长是短轴长的2倍,即a=2b.因为椭圆经过点(2,0),所以若焦点在x轴上,则a=2,b=1,椭圆的标准方程为+y2=1;若焦点在y轴上,则a=4,b=2,椭圆的标准方程为+=1,故选C.
    2.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为(  )
    A.4 B.3
    C.2 D.5
    解析:选A 连接PF2,由题意知,a=5,在△PF1F2中,|OM|=|PF2|=3,∴|PF2|=6,∴|PF1|=2a-|PF2|=10-6=4.故选A.
    3.与椭圆9x2+4y2=36有相同焦点,且短轴长为2的椭圆的标准方程为(  )
    A.+=1 B.x2+=1
    C.+y2=1 D.+=1
    解析:选B 椭圆9x2+4y2=36可化为+=1,可知焦点在y轴上,焦点坐标为(0,±),
    故可设所求椭圆方程为+=1(a>b>0),则c=.
    又2b=2,即b=1,所以a2=b2+c2=6,
    则所求椭圆的标准方程为x2+=1.
    4.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(  )
    A. B.
    C. D.
    解析:选B 不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为+=1,即bx+cy-bc=0.由题意知=×2b,解得=,即e=.故选B.
    5.(多选)设椭圆+=1的右焦点为F,直线y=m(0 A.|AF|+|BF|为定值
    B.△ABF的周长的取值范围是[6,12]
    C.当m=时,△ABF为直角三角形
    D.当m=1时,△ABF的面积为
    解析:选AD 设椭圆的左焦点为F′,则|AF′|=|BF|,
    ∴|AF|+|BF|=|AF|+|AF′|=6为定值,A正确;
    △ABF的周长为|AB|+|AF|+|BF|,
    ∵|AF|+|BF|为定值6,|AB|的取值范围是(0,6),
    ∴△ABF的周长的取值范围是(6,12),B错误;
    将y=与椭圆方程联立,可解得A(-,),B(,),
    又∵F(,0),∴BA―→·=(-2,0)·(-,-)=6-6<0,∴△ABF不是直角三角形,C错误;
    将y=1与椭圆方程联立,解得A(-,1),B(,1),
    ∴S△ABF=×2×1=,D正确.
    6.已知O为坐标原点,点F1,F2分别为椭圆C:+=1的左、右焦点,A为椭圆C上的一点,且AF2⊥F1F2,AF1与y轴交于点B,则的值为(  )
    A. B.
    C. D.
    解析:选A 由AF2⊥F1F2,可知==,
    ∵OB∥AF2且O为F1F2中点,∴==.
    7.已知动点M在以F1,F2为焦点的椭圆x2+=1上,动点N在以M为圆心,半径长为|MF1|的圆上,则|NF2|的最大值为(  )
    A.2 B.4
    C.8 D.16
    解析:选B 由椭圆的方程可得焦点在y轴上,a2=4,∴a=2,由题意可得|NF2|≤|F2M|+|MN|=|F2M|+|MF1|,
    当N,M,F2三点共线时取得最大值(如图),而|F2M|+|MF1|=2a=4,
    ∴|NF2|的最大值为4.故选B.
    8.(多选)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2且|F1F2|=2,点P(1,1)在椭圆内部,点Q在椭圆上,则以下说法正确的是(  )
    A.|QF1|+|QP|的最小值为2-1
    B.椭圆C的短轴长可能为2
    C.椭圆C的离心率的取值范围为
    D.若=,则椭圆C的长轴长为+
    解析:选ACD 因为|F1F2|=2,所以F2(1,0),|PF2|=1,所以|QF1|+|QP|=2-|QF2|+|QP|≥2-|PF2|=2-1,当Q,F2,P三点共线时,取等号,故A正确;若椭圆C的短轴长为2,则b=1,a=2,所以椭圆方程为+=1,+>1,则点P在椭圆外,故B错误;因为点P(1,1)在椭圆内部,所以+<1,又a-b=1,所以b=a-1,所以+<1,即a2-3a+1>0,解得a>==,所以>,所以e=<,所以椭圆C的离心率的取值范围为,故C正确;若=,则F1为线段PQ的中点,所以Q(-3,-1),所以+=1,又a-b=1,即a2-11a+9=0,解得a===,所以=,所以椭圆C的长轴长为+,故D正确.故选A、C、D.
    9.与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.
    解析:设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r.所以|PC1|+|PC2|=10>|C1C2|=6,即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,得点P的轨迹方程为+=1.
    答案:+=1
    10.设F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一个点,且PF1⊥PF2,若△PF1F2的面积为9,周长为18,则椭圆C的方程为________.
    解析:∵PF1⊥PF2,∴△PF1F2为直角三角形,
    又知△PF1F2的面积为9,∴|PF1|·|PF2|=9,
    得|PF1|·|PF2|=18.
    在Rt△PF1F2中,由勾股定理得|PF1|2+|PF2|2=|F1F2|2,由椭圆定义知|PF1|+|PF2|=2a,
    ∴(|PF1|+|PF2|)2-2|PF1||PF2|=|F1F2|2,即4a2-36=4c2,∴a2-c2=9,即b2=9,又知b>0,∴b=3,
    ∵△PF1F2的周长为18,∴2a+2c=18,即a+c=9,①
    又知a2-c2=9,∴a-c=1.②
    由①②得a=5,c=4,∴所求的椭圆方程为+=1.
    答案:+=1
    11.已知椭圆+=1(a>b>0),点P是椭圆在第一象限上的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为________.
    解析:如图,延长F2A交F1P于点M,由题意可知|PM|=|PF2|,
    由椭圆定义可知
    |PF1|+|PF2|=2a,
    故有|PF1|+|PM|=|MF1|=2a.连接OA,知OA是△F1F2M的中位线,∴|OA|=|MF1|=a,
    由|OA|=2b,得2b=a,则a2=4b2=4(a2-c2),
    即c2=a2,∴e==.
    答案:
    12.设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,上、下顶点分别为A,B,直线AF2与该椭圆交于A,M两点.若∠F1AF2=90°,则直线BM的斜率为________.
    解析:∵∠F1AF2=90°,
    ∴a=b,即椭圆方程为+=1.
    设M,A,B,且+=1,
    即n2-b2=-,
    kAMkBM=·===-,
    又kAM=-1,∴kBM=.
    答案:
    13.(2020·全国卷Ⅲ)已知椭圆C:+=1(0 (1)求C的方程;
    (2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.
    解:(1)由题设可得=,解得m2=,
    所以C的方程为+=1.
    (2)设P(xP,yP),Q(6,yQ),
    根据对称性可设yQ>0,由题意知yP>0.
    由已知可得B(5,0),直线BP的方程为y=-(x-5),
    所以|BP|=yP,|BQ|=.
    因为|BP|=|BQ|,所以yP=1,
    将yP=1代入C的方程,解得xP=3或-3.
    由直线BP的方程得yQ=2或8.
    所以点P,Q的坐标分别为P1(3,1),Q1(6,2);P2(-3,1),Q2(6,8).
    |P1Q1|=,直线P1Q1的方程为y=x,点A(-5,0)到直线P1Q1的距离为,
    故△AP1Q1的面积为××=;
    |P2Q2|=,直线P2Q2的方程为y=x+,点A到直线P2Q2的距离为,
    故△AP2Q2的面积为××=.
    综上,△APQ的面积为.
    14.已知椭圆+=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.
    (1)若∠F1AB=90°,求椭圆的离心率;
    (2)若=2,·=,求椭圆的方程.
    解:(1)若∠F1AB=90°,则△AOF2为等腰直角三角形,所以有|OA|=|OF2|,即b=c.
    所以a=c,e==.
    (2)由题知A(0,b),F1(-c,0),F2(c,0),
    其中c=,设B(x,y).
    由=2,得(c,-b)=2(x-c,y),
    解得x=,y=-,即B.
    将B点坐标代入+=1,得+=1,
    即+=1,解得a2=3c2.①
    又由·=(-c,-b)·=,
    得b2-c2=1,即有a2-2c2=1.②
    由①②解得c2=1,a2=3,从而有b2=2.
    所以椭圆的方程为+=1.
    三、自选练——练高考区分度

    1.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点,若|AF2|=3|BF2|,|BF1|=5|BF2|,则C的方程为(  )
    A.+y2=1 B.+=1
    C.+=1 D.+=1
    解析:选A 设椭圆的长轴长为2a,短轴长为2b.
    ∵|AF2|=3|BF2|,∴|AB|=4|BF2|.
    又|BF1|=5|BF2|,|BF1|+|BF2|=2a,
    ∴|BF2|=,∴|AF2|=a,|BF1|=a.
    ∵|AF1|+|AF2|=2a,∴|AF1|=a,
    ∴|AF1|=|AF2|,∴A在y轴上.
    如图所示,在Rt△AF2O中,
    cos∠AF2O=.
    在△BF1F2中,由余弦定理可得
    cos∠BF2F1==,
    根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=2,∴b2=a2-c2=2-1=1.
    ∴椭圆C的方程为+y2=1.故选A.
    2.已知椭圆+=1(a>b>0)上有一点A,它关于原点的对称点为B,点F为椭圆的右焦点,且AF⊥BF,设∠ABF=α,且α∈,则该椭圆的离心率e的取值范围为(  )
    A. B.(-1,1)
    C. D.
    解析:选A 如图所示,设椭圆的左焦点为F′,连接AF′,BF′,则四边形AFBF′为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos α,
    ∴2csin α+2ccos α=2a,
    ∴e==.
    ∵α∈,∴α+∈,
    ∴sin∈,
    ∴sin∈,
    ∴e∈.故选A.
    3.如图所示,A1,A2是椭圆C:+=1的短轴端点,点M在椭圆上运动,且点M不与A1,A2重合,点N满足NA1⊥MA1,NA2⊥MA2,则=(  )
    A.2 B.3
    C.4 D.
    解析:选A 由题意知A1(0,3),A2(0,-3).
    设M(x0,y0),N(x1,y1),则直线MA1的斜率为kMA1=.
    由NA1⊥MA1,可得NA1的斜率为k NA1=-.
    于是直线NA1的方程为y=-x+3.  ①
    同理,NA2的方程为y=-x-3. ②
    联立①②消去y,得x=x1=.
    因为M(x0,y0)在椭圆+=1上,所以+=1,从而y-9=-,所以x1=-,所以==2.故选A.
    相关试卷

    新高考数学一轮复习课时跟踪检测(五十一)统计(含解析): 这是一份新高考数学一轮复习课时跟踪检测(五十一)统计(含解析),共7页。

    新高考数学一轮复习课时跟踪检测(十二)函数与方程(含解析): 这是一份新高考数学一轮复习课时跟踪检测(十二)函数与方程(含解析),共6页。试卷主要包含了综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。

    高考数学一轮复习课时跟踪检测07 函数的图象 含解析: 这是一份高考数学一轮复习课时跟踪检测07 函数的图象 含解析,共5页。试卷主要包含了已知函数f=2x,x∈R.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课时跟踪检测(四十四)椭圆(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map