高考数学二轮复习 专题05 平面解析几何(含解析)
展开
这是一份高考数学二轮复习 专题05 平面解析几何(含解析),共45页。
专题05 平面解析几何
1.【2022年全国甲卷】已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据离心率及,解得关于的等量关系式,即可得解.
【详解】
解:因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
2.【2022年全国甲卷】椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】
【分析】
设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.
【详解】
解:,
设,则,
则,
故,
又,则,
所以,即,
所以椭圆的离心率.
故选:A.
3.【2022年全国乙卷】设F为抛物线的焦点,点A在C上,点,若,则( )
A.2 B. C.3 D.
【答案】B
【解析】
【分析】
根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.
【详解】
由题意得,,则,
即点到准线的距离为2,所以点的横坐标为,
不妨设点在轴上方,代入得,,
所以.
故选:B
4.【2022年全国乙卷】(多选)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C的两支交于M,N两点,且,则C的离心率为( )
A. B. C. D.
【答案】AC
【解析】
【分析】
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
【详解】
解:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
5.【2022年北京】若直线是圆的一条对称轴,则( )
A. B. C.1 D.
【答案】A
【解析】
【分析】
若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.
【详解】
由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.
故选:A.
6.【2022年新高考1卷】(多选)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为 B.直线AB与C相切
C. D.
【答案】BCD
【解析】
【分析】
求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
【详解】
将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
7.【2022年新高考2卷】(多选)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为 B.
C. D.
【答案】ACD
【解析】
【分析】
由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】
对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
8.【2022年全国甲卷】设点M在直线上,点和均在上,则的方程为______________.
【答案】
【解析】
【分析】
设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.
【详解】
解:∵点M在直线上,
∴设点M为,又因为点和均在上,
∴点M到两点的距离相等且为半径R,
∴,
,解得,
∴,,
的方程为.
故答案为:
9.【2022年全国甲卷】记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值______________.
【答案】2(满足皆可)
【解析】
【分析】
根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.
【详解】
解:,所以C的渐近线方程为,
结合渐近线的特点,只需,即,
可满足条件“直线与C无公共点”
所以,
又因为,所以,
故答案为:2(满足皆可)
10.【2022年全国甲卷】若双曲线的渐近线与圆相切,则_________.
【答案】
【解析】
【分析】
首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.
【详解】
解:双曲线的渐近线为,即,
不妨取,圆,即,所以圆心为,半径,
依题意圆心到渐近线的距离,
解得或(舍去).
故答案为:.
11.【2022年全国乙卷】过四点中的三点的一个圆的方程为____________.
【答案】或或或;
【解析】
【分析】
设圆的方程为,根据所选点的坐标,得到方程组,解得即可;
【详解】
解:依题意设圆的方程为,
若过,,,则,解得,
所以圆的方程为,即;
若过,,,则,解得,
所以圆的方程为,即;
若过,,,则,解得,
所以圆的方程为,即;
若过,,,则,解得,
所以圆的方程为,即;
故答案为:或或或;
12.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________.
【答案】或或
【解析】
【分析】
先判断两圆位置关系,分情况讨论即可.
【详解】
圆的圆心为,半径为,圆的圆心为,半径为,
两圆圆心距为,等于两圆半径之和,故两圆外切,
如图,
当切线为l时,因为,所以,设方程为
O到l的距离,解得,所以l的方程为,
当切线为m时,设直线方程为,其中,,
由题意,解得,
当切线为n时,易知切线方程为,
故答案为:或或.
13.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
【答案】13
【解析】
【分析】
利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.
【详解】
∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
判别式,
∴,
∴ , 得,
∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
故答案为:13.
14.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.
【答案】
【解析】
【分析】
首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;
【详解】
解:关于对称的点的坐标为,在直线上,
所以所在直线即为直线,所以直线为,即;
圆,圆心,半径,
依题意圆心到直线的距离,
即,解得,即;
故答案为:
15.【2022年新高考2卷】已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
【答案】
【解析】
【分析】
令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
【详解】
解:令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
16.【2022年北京】已知双曲线的渐近线方程为,则__________.
【答案】
【解析】
【分析】
首先可得,即可得到双曲线的标准方程,从而得到、,再跟渐近线方程得到方程,解得即可;
【详解】
解:对于双曲线,所以,即双曲线的标准方程为,
则,,又双曲线的渐近线方程为,
所以,即,解得;
故答案为:
17.【2022年浙江】已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是_________.
【答案】
【解析】
【分析】
联立直线和渐近线方程,可求出点,再根据可求得点,最后根据点在双曲线上,即可解出离心率.
【详解】
过且斜率为的直线,渐近线,
联立,得,由,得
而点在双曲线上,于是,解得:,所以离心率.
故答案为:.
18.【2022年全国甲卷】设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
【答案】(1);
(2).
【解析】
【分析】
(1)由抛物线的定义可得,即可得解;
(2)设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
(1)
抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,
所以,
若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
【点睛】
关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.
19.【2022年全国乙卷】已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
【答案】(1)
(2)
【解析】
【分析】
(1)将给定点代入设出的方程求解即可;
(2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.
(1)
解:设椭圆E的方程为,过,
则,解得,,
所以椭圆E的方程为:.
(2)
,所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,
且
联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】
求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
20.【2022年新高考1卷】已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;
(2)若,求的面积.
【答案】(1);
(2).
【解析】
【分析】
(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;
(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.
(1)
因为点在双曲线上,所以,解得,即双曲线
易知直线l的斜率存在,设,,
联立可得,,
所以,,.
所以由可得,,
即,
即,
所以,
化简得,,即,
所以或,
当时,直线过点,与题意不符,舍去,
故.
(2)
不妨设直线的倾斜角为,因为,所以,
因为,所以,即,
即,解得,
于是,直线,直线,
联立可得,,
因为方程有一个根为,所以, ,
同理可得,, .
所以,,
点到直线的距离,
故的面积为.
21.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
①M在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
【答案】(1)
(2)见解析
【解析】
【分析】
(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;
(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由③|AM|=|BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.
(1)
右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.
∴C的方程为:;
(2)
由已知得直线的斜率存在且不为零,直线的斜率不为零,
若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;
若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;
总之,直线的斜率存在且不为零.
设直线的斜率为,直线方程为,
则条件①在上,等价于;
两渐近线的方程合并为,
联立消去y并化简整理得:
设,线段中点为,则,
设,
则条件③等价于,
移项并利用平方差公式整理得:
,
,即,
即;
由题意知直线的斜率为, 直线的斜率为,
∴由,
∴,
所以直线的斜率,
直线,即,
代入双曲线的方程,即中,
得:,
解得的横坐标:,
同理:,
∴
∴,
∴条件②等价于,
综上所述:
条件①在上,等价于;
条件②等价于;
条件③等价于;
选①②推③:
由①②解得:,∴③成立;
选①③推②:
由①③解得:,,
∴,∴②成立;
选②③推①:
由②③解得:,,∴,
∴,∴①成立.
22.【2022年北京】已知椭圆:的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
【答案】(1)
(2)
【解析】
【分析】
(1)依题意可得,即可求出,从而求出椭圆方程;
(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
(1)
解:依题意可得,,又,
所以,所以椭圆方程为;
(2)
解:依题意过点的直线为,设、,不妨令,
由,消去整理得,
所以,解得,
所以,,
直线的方程为,令,解得,
直线的方程为,令,解得,
所以
,
所以,
即
即
即
整理得,解得
23.【2022年浙江】如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.
(1)求点P到椭圆上点的距离的最大值;
(2)求的最小值.
【答案】(1);
(2).
【解析】
【分析】
(1)设是椭圆上任意一点,再根据两点间的距离公式求出,再根据二次函数的性质即可求出;
(2)设直线与椭圆方程联立可得,再将直线方程与的方程分别联立,可解得点的坐标,再根据两点间的距离公式求出,最后代入化简可得,由柯西不等式即可求出最小值.
(1)
设是椭圆上任意一点,,则
,当且仅当时取等号,故的最大值是.
(2)
设直线,直线方程与椭圆联立,可得,设,所以,
因为直线与直线交于,
则,同理可得,.则
,
当且仅当时取等号,故的最小值为.
【点睛】
本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.
1.(2022·全国·模拟预测)设M是椭圆C:的上顶点,P是C上的一个动点,当P运动到下顶点时,取得最大值,则C的离心率的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】
设,由,求出消元可得,,再根据以及二次函数的性质可知,,即可解出.
【详解】
设,,因为,,
所以,,由题意知当时,取得最大值,所以,可得,即.
故选:C.
2.(2022·福建·三明一中模拟预测)已知圆,圆,若圆M上存在点P,过点P作圆O的两条切线,切点分别为A,B,使得,则实数的取值范围是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
由题意求出的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案.
【详解】
由题可知圆O 的半径为,圆M上存在点P,过点P作圆 O 的两条切线,
切点分别为A,B,使得,则,
在中,,
所以点 在圆上,
由于点 P 也在圆 M 上,故两圆有公共点.
又圆 M 的半径等于1,圆心坐标,
,
∴,
∴.
故选:D.
3.(2022·全国·模拟预测(文))已知双曲线(,)一个虚轴的顶点为,右焦点为,分别以,为圆心作圆与双曲线的一条斜率为正值的渐近线相切于,两点,若,则该渐近线的斜率为( )
A. B.1 C. D.
【答案】A
【解析】
【分析】
根据渐近线倾斜角的正切值表达出,再化简得到求解即可
【详解】
由题意,如图,设,则因为该渐近线的斜率为,故,,,又因为圆与渐近线相切,故,,故,,所以,即,所以,即,故,即,故该渐近线的斜率为
故选:A
4.(2022·河南·开封市东信学校模拟预测(理))已知分别为双曲线的左焦点和右焦点,过的直线l与双曲线的右支交于A,B两点,的内切圆半径为,的内切圆半径为,若,且直线l的倾斜角为,则的值为( )
A.2 B.3 C. D.
【答案】B
【解析】
【分析】
根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可.
【详解】
记的内切圆圆心为C,边上的切点分别为M,N,E,
则C,E横坐标相等,则,
由,即,得,即,记C的横坐标为,则,
于是,得,同理的内心D的横坐标也为a,
则有轴,由直线的倾斜角为,则,,
在中,,可得,
在中,,可得,
可得.
故选:B
5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线的左、右焦点分别为过左焦点作斜率为2的直线与双曲线交于A,B两点,P是AB的中点,O为坐标原点,若直线OP的斜率为,则b的值是( )
A.2 B. C. D.
【答案】D
【解析】
【分析】
利用点差法设、,作差即可得到,再根据斜率公式,从而得到,即可得解;
【详解】
解:设、,则,,
两式相减可得,
为线段的中点,,,
,又,,
,即,,
故选:D.
6.(2022·全国·模拟预测(理))已知双曲线的左、有焦点分别为,,实轴长为4,离心率,点Q为双曲线右支上的一点,点.当取最小值时,的值为( )
A. B. C. D.
【答案】B
【解析】
【分析】
由题意求得a,b,c,即可得双曲线的方程,结合双曲线的定义确定当取最小值时Q点的位置,利用方程组求得Q点坐标,再利用两点间的距离公式求得答案.
【详解】
由题意可得 ,又,故 ,
所以 ,则双曲线方程为 ,
结合双曲线定义可得,
如图示,连接,交双曲线右支于点M,即当三点共线,
即Q在M位置时,取最小值,
此时直线方程为 ,联立,
解得点Q的坐标为,( Q为双曲线右支上的一点),
故,
故选:B
7.(2022·上海市七宝中学模拟预测)若双曲线和双曲线的焦点相同,且给出下列四个结论:
①;
②;
③双曲线与双曲线一定没有公共点;
④;
其中所有正确的结论序号是( )
A.①② B.①③ C.②③ D.①④
【答案】B
【解析】
【分析】
对于①,根据双曲线的焦点相同,可知焦距相同,可判断;对于②,举反例可说明;对于③,根据可推得,继而推得,可判断双曲线与双曲线一定没有公共点;对于④,举反例可判断.
【详解】
对于①:∵两双曲线的焦点相同,∴焦距相同,
∴,即,故①正确;
对于②:若,,,,则,故②错误;
对于③:∵,∴,∴ ,即,
即,双曲线与双曲线一定没有公共点,故③正确;
对于④:∵,∴,
∵且,∴ ,
若,,,,则,故④错误.
故选:B
8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线的左、右焦点分别为,为双曲线右支上的一点,若在以为直径的圆上,且,则该双曲线离心率的取值范围为( )
A. B. C. D.
【答案】D
【解析】
【分析】
由可得、,由双曲线定义可构造方程得到;由正弦型函数值域的求法可求得离心率的取值范围.
【详解】
在以为直径的圆上,,
,,,,
由双曲线定义知:,即,
;
,,,
则,,
即双曲线离心率的取值范围为.
故选:D.
9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线的左、右焦点分别为,过点的直线与的左、右两支分别交于点,若是边长为的等边三角形,则的离心率为( )
A. B. C. D.
【答案】B
【解析】
【分析】
由双曲线定义可推导得,求得;在中,利用余弦定理可求得,进而得到,由可求得离心率.
【详解】
,,
又,,解得:,,
在中,由余弦定理得:,
解得:,即,,
双曲线的离心率.
故选:B.
10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆的左右焦点为,若椭圆C上恰好有6个不同的点P,使得为等腰三角形,则椭圆C的离心率的取值范围是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
由题可知六个点,有两个是短轴端点,因此在四个象限各一个,设是第一象限内的点,分或,列方程组求得点横坐标,由可得离心率范围;或结合椭圆的性质列出不等关系即得.
【详解】
法一:显然,是短轴端点时,,满足为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,
设是第一象限内使得为等腰三角形的点,
若,则,又,
消去整理得:,
解得(舍去)或,
由得,
所以,即,
若,则,又,
消去整理得:,
解得或,舍去.
所以,
所以,即,
时,,是等边三角形,只能是短轴端点,只有2个,不合题意.
综上,的范围是.
法二:①当点与短轴的顶点重合时,构成以为底边的等腰三角形,此种情况有2个满足条件的;
②当构成以为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点满足为等腰三角形即可,则或
当时,则,即,则,
当时,则有,则,
综上所述,椭圆的离心率取值范围是.
故选:A.
11.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆的两个焦点分别为和,椭圆上一点到和的距离之和为,且椭圆的离心率为.
(1)求椭圆的方程;
(2)过左焦点的直线交椭圆于、两点,线段的中垂线交轴于点(不与重合),是否存在实数,使恒成立?若存在,求出的值;若不存在,请说出理由.
【答案】(1)
(2)存在,
【解析】
【分析】
(1)由椭圆的定义可求得的值,根据椭圆的离心率求得的值,再求出的值,即可得出椭圆的方程;
(2)分析可知,直线不与轴垂直,分两种情况讨论,一是直线与轴重合,二是直线的斜率存在且不为零,设出直线的方程,与椭圆方程联立,求出、,即可求得的值.
(1)
解:由椭圆的定义可得,则,因为,,则,
因此,椭圆的方程为.
(2)
解:若直线与轴垂直,此时,线段的垂直平分线为轴,不合乎题意;
若直线与轴重合,此时,线段的垂直平分线为轴,则点与坐标原点重合,
此时,;
若直线的斜率存在且不为零时,设直线的方程为,设点、,
联立可得,
,
由韦达定理可得,,
则,
所以,线段的中点为,
所以,线段的垂直平分线所在直线的方程为,
在直线方程中,令可得,
故点,所以,,
由弦长公式可得,
因此,.
综上所述,存在,使得恒成立.
【点睛】
方法点睛:求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关;
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
12.(2022·黑龙江·鸡西市第四中学三模(理))已知抛物线C:,圆O:.
(1)若抛物线C的焦点F在圆O上,且A为C和圆O的一个交点,求;
(2)若直线l与抛物线C和圆O分别相切于点M,N,求的最小值及相应p的值.
【答案】(1)
(2)最小值为,
【解析】
【分析】
(1)由得出抛物线方程,并与圆方程联立,求出,最后由抛物线定义得出;
(2)由导数的几何意义得出切线l的方程,由点到切线的距离等于结合勾股定理得出,再由基本不等式得出的最小值及相应p的值.
(1)
由题意,得,从而C:.
解方程组,整理得,,解得
所以.
(2)
设,由得,故切线l的方程为,
注意到,故整理得
由且,即点到切线的距离等于得
所以,
整理,得且,
所以
,
当且仅当时等号成立.
所以的最小值为,此时.
13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C的焦点在y轴上,中心在坐标原点,从下焦点射出的光线经过椭圆镜面反射到上焦点,这束光线的总长度为4,且反射点与焦点构成的三角形面积最大值为,已知椭圆的离心率e.
(1)求椭圆C的标准方程;
(2)若从椭圆C中心O出发的两束光线OM、ON,分别穿过椭圆上的A、B点后射到直线上的M、N两点,若AB连线过椭圆的上焦点,试问,直线BM与直线AN能交于一定点吗?若能,求出此定点:若不能,请说明理由.
【答案】(1)
(2)能,定点为(0,)
【解析】
【分析】
(1)由条件列方程求可得椭圆方程;
(2)联立方程组,利用设而不求法结论完成证明.
(1)
由已知可设椭圆方程为,
则,,
又
所以,
故椭圆C的标准方程为
(2)
设AB方程为,由,得,
设,则..
由对称性知,若定点存在,则直线BM与直线AN交于y轴上的定点,
由得,则直线BM方程为,
令,则
又,
则,
所以,直线BM过定点(0,),同理直线AN也过定点.
则点(0,)即为所求点.
【点睛】
解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
14.(2022·山西·太原五中二模(文))已知椭圆,过原点的两条直线和分别与椭圆交于和,记得到的平行四边形的面积为.
(1)设,用的坐标表示点到直线的距离,并证明;
(2)请从①②两个问题中任选一个作答
①设与的斜率之积,求面积的值.
②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.
【答案】(1)距离为,证明见解析;
(2)见解析
【解析】
【分析】
(1)讨论和,分别写出直线的方程,由距离公式即可求得点到直线的距离,由面积公式即可证明;
(2)若选①,设出直线和的方程,联立椭圆求出的坐标,结合(1)中面积公式求解即可;若选②,设出直线和的方程,联立椭圆求出的坐标,结合(1)中面积公式得到的表达式,平方整理,由含的项系数为0即可求解.
(1)
当时,直线的方程为:,则点到直线的距离为;
当时,直线的方程为:,则点到直线的距离为,也满足,
则点到直线的距离为;因为,
则;
(2)
若选①,设,设,直线与椭圆联立可得,
同理直线与椭圆联立可得,不妨令,则,
,
则;
若选②,设,设,直线与椭圆联立可得,则,
同理可得,则
,两边平方整理得,
由面积与无关,可得,解得,故时,无论与如何变动,面积保持不变.
15.(2022·陕西·西北工业大学附属中学模拟预测(理))已知椭圆C:的离心率为,且经过,经过定点斜率不为0的直线l交C于E,F两点,A,B分别为椭圆C的左,右两顶点.
(1)求椭圆C的方程;
(2)设直线AE与BF的斜率分别为,,求的值;
(3)设直线AE与BF的交点为P,求P点的轨迹方程.
【答案】(1)
(2)
(3)P点的轨迹方程为
【解析】
【分析】
(1)根据题意可得求解即可;(2)根据方程先求,再结合韦达定理求;(3)联立直线方程结合求点P的横坐标.
(1)
根据题意可得,解得
∴求椭圆C的方程为
(2)
根据题意可得,设直线l:,直线BE的斜率为,则
∵,整理得,则
联立方程,消去得
∴
∴
(3)
根据题意可得直线AE:,BF:
联立方程,解得
∴P点的轨迹方程为
相关试卷
这是一份三年 (2020-2022 ) 新高考真题汇编 专题05平面解析几何,共32页。
这是一份高考数学真题专题训练 05平面解析几何(含解析),共32页。试卷主要包含了 等内容,欢迎下载使用。
这是一份高中数学高考专题05 平面解析几何(解析版),共30页。试卷主要包含了已知为坐标原点,抛物线等内容,欢迎下载使用。