新高考数学一轮复习课时过关练习第03章 导数的综合问题第3课时 构造函数证明不等式 (含解析)
展开第三课时 构造函数证明不等式
题型一 移项构造函数证明不等式
例1 已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln ,且x>0时,>x+-3a.
(1)解 由f(x)=ex-3x+3a,x∈R,
知f′(x)=ex-3,x∈R.
令f′(x)=0,得x=ln 3,
于是当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,ln 3)
ln 3
(ln 3,+∞)
f′(x)
-
0
+
f(x)
极小值
故f(x)的单调递减区间是(-∞,ln 3),单调递增区间是(ln 3,+∞),
f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=eln 3-3ln 3+3a=3(1-ln 3+a),无极大值.
(2)证明 待证不等式等价于ex>x2-3ax+1,
设g(x)=ex-x2+3ax-1,x>0,
于是g′(x)=ex-3x+3a,x>0.
由(1)及a>ln =ln 3-1知
g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
于是对任意x>0,都有g′(x)>0,
所以g(x)在(0,+∞)内单调递增.
于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex>x2-3ax+1,故>x+-3a.
感悟提升 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”或“右减左”的函数,利用导数研究其单调性等相关函数性质证明不等式.
训练1 证明:当x>1时,x2+ln x
则g′(x)=2x2-x-,
因为当x>1时,
g′(x)=>0,
所以g(x)在(1,+∞)上是增函数,
所以当x>1时,g(x)>g(1)=>0,
所以当x>1时,x2+ln x<x3.
题型二 分拆函数法证明不等式
例2 证明:对一切x∈(0,+∞),都有ln x>-成立.
证明 问题等价于证明xln x>-(x∈(0,+∞)).
设f(x)=xln x,f′(x)=1+ln x,易知x=为f(x)的唯一极小值点,
则f(x)=xln x(x∈(0,+∞))的最小值是-,当且仅当x=时取到.
设m(x)=-(x∈(0,+∞)),则m′(x)=,由m′(x)<0,得x>1时,m(x)单调递减;
由m′(x)>0得0<x<1时,m(x)单调递增,易知m(x)max=m(1)=-,当且仅当x=1时取到.从而对一切x∈(0,+∞),xln x≥-≥-,两个等号不同时取到,所以对一切x∈(0,+∞)都有ln x>-成立.
感悟提升 1.若直接求导后导数式比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.在证明过程中,等价转化是关键,此处g(x)min≥f(x)max恒成立,从而f(x)≤g(x)恒成立.
2.等价变形的目的是求导后简单地找到极值点,一般地,ex与ln x要分离,常构造xn与ln x,xn与ex的积、商形式.便于求导后找到极值点.
训练2 (2022·百校大联考)已知函数f(x)=eln x-ax(x∈R).
(1)讨论函数f(x)的单调性;
(2)当a=e时,证明:xf(x)-ex+2ex≤0.
(1)解 f′(x)=-a(x>0),
①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
②若a>0,则当0
当x>时,f′(x)<0,∴f(x)在上单调递增,在上单调递减.
综上,当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.
(2)证明 法一 ∵x>0,∴只需证f(x)≤-2e,
当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
∴f(x)max=f(1)=-e.
记g(x)=-2e(x>0),
则g′(x)=,
∴当0
在(1,+∞)上单调递增,
∴g(x)min=g(1)=-e.
综上,当x>0时,f(x)≤g(x),即f(x)≤-2e,即xf(x)-ex+2ex≤0.
法二 由题意知,即证exln x-ex2-ex+2ex≤0,
从而等价于ln x-x+2≤.
设函数g(x)=ln x-x+2,
则g′(x)=-1.
∴当x∈(0,1)时,g′(x)>0,
当x∈(1,+∞)时,g′(x)<0,
故g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
从而g(x)在(0,+∞)上的最大值为g(1)=1.
设函数h(x)=,则h′(x)=.
∴当x∈(0,1)时,h′(x)<0,
当x∈(1,+∞)时,h′(x)>0,
故h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
从而h(x)在(0,+∞)上的最小值为h(1)=1.
综上,当x>0时,g(x)≤h(x),即xf(x)-ex+2ex≤0.
题型三 放缩后构造函数证明不等式
例3 已知x∈(0,1),求证:x2-<.
证明 法一 要证x2-<,
只需证ex<ln x,
又易证ex>x+1(0<x<1),
∴只需证明ln x+(x+1)>0.
即证ln x+1-x3+-x2>0,
而x3<x,x2<x(0<x<1),
∴只需证ln x+1-2x+>0,
令g(x)=ln x+1-2x+,
则g′(x)=-2-=-,
而2x2-x+1>0恒成立,
∴g′(x)<0,
∴g(x)在(0,1)上单调递减,
∴当x∈(0,1)时,g(x)>g(1)=0,
即ln x+1-2x+>0.
∴x2-<.
法二 ∵x∈(0,1),∴ex∈(1,e),
∴要证x2-<成立,
只需证ex<ln x成立,
只需证x2-<ln x,
又x2<x(0<x<1),
∴只需证ln x+-x>0,
令h(x)=ln x+-x,
则h′(x)=--1=-,
而x2-x+1>0恒成立,∴h′(x)<0,
∴h(x)在(0,1)上单调递减,
∴当x∈(0,1)时,h(x)>h(1)=0,
∴ln x+-x>0,
∴x2-<.
感悟提升 某些不等式,直接构造函数不易求其最值,可以适当地利用熟知的函数不等式ex≥x+1,1-≤ln x≤x-1等进行放缩,有利于简化后续导数式的求解或函数值正负的判断;也可以利用局部函数的有界性进行放缩,然后再构造函数进行证明.
训练3 证明:exln x+>1.
证明 不等式exln x+>1等价于(exln x+2)>1,
由常用不等式ex≥x+1,故ex-1≥x.
即≥1,故只需证exln x+2>1,
令f(x)=exln x+2(x>0),
则f′(x)=e(ln x+1),
易得当x∈时,f′(x)<0;
x∈时,f′(x)>0,
故f(x)>f=1,原不等式得证.
指对同构
在解决指对混合不等式时,如恒成立求参数取值范围或证明不等式,有一部分题是命题者利用函数单调性构造出来的,如果我们能找到这个函数模型(即不等式两边对应的同一函数),无疑大大加快解决问题的速度.找到这个函数模型的方法,我们称为同构法.
(1)五个常见变形:
xex=ex+ln x,=ex-ln x,=eln x-x,x+ln x=ln xex,x-ln x=ln .
(2)三种基本模式
①积型:aea≤bln b
②商型:<
③和差型:ea±a>b±ln b
例 (1)(2020·新高考全国Ⅰ卷节选)已知函数f(x)=aex-1-ln x+ln a.
若f(x)≥1,求a的取值范围.
解 f(x)的定义域为(0,+∞),
f(x)=aex-1-ln x+ln a=eln a+x-1-ln x+ln a≥1,
等价于eln a+x-1+ln a+x-1≥ln x+x=eln x+ln x.
令g(x)=ex+x,上述不等式等价于g(ln a+x-1)≥g(ln x).
显然g(x)为单调增函数,所以又等价于ln a+x-1≥ln x,即ln a≥ln x-x+1.
令h(x)=ln x-x+1,
则h′(x)=-1=.
当x∈(0,1)时,h′(x)>0,h(x)单调递增;
当x∈(1,+∞)时,h′(x)<0,h(x)单调递减,所以h(x)max=h(1)=0,所以ln a≥0,即a≥1,a的取值范围是[1,+∞).
(2)已知函数f(x)=aex-ln x-1,证明:当a≥时,f(x)≥0.
证明 当a≥时,f(x)≥-ln x-1,
所以只需证明-ln x-1≥0,
由于-ln x-1≥0⇔ex≥eln ex⇔xex≥exln ex⇔xex≥eln exln ex,
令g(x)=xex,
由g′(x)=ex(x+1)>0知g(x)为增函数,
又易证x≥ln ex=ln x+1,
所以g(x)≥g(ln ex),
即xex≥eln exln ex成立.
故当a≥时,f(x)≥0.
1.已知函数f(x)=ln x-.
(1)若a=1,求f(x)的单调区间;
(2)若a=0,x∈(0,1),证明:x2-<.
(1)解 当a=1时,f(x)=ln x-,x∈(0,+∞),
∴f′(x)=-=
=.
当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,
∴f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).
(2)证明 当a=0,x∈(0,1)时,x2-<等价于+x2-<0,
∵当x∈(0,1)时,ex∈(1,e),-ln x>0,
∴<-ln x,
∴只需要证-ln x+x2-<0在(0,1)上恒成立.
令g(x)=-ln x+x2-,x∈(0,1),
∴g′(x)=-+2x+=>0,
则函数g(x)在(0,1)上单调递增,于是g(x)<-ln 1+1-1=0,
∴当x∈(0,1)时,x2-<.
2.已知函数f(x)=1-,g(x)=+-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
(1)求a,b的值;
(2)证明:当x≥1时,f(x)+g(x)≥.
(1)解 因为f(x)=1-,x>0,
所以f′(x)=,f′(1)=-1.
因为g(x)=+-bx,
所以g′(x)=---b.
因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
所以g(1)=1,且f′(1)·g′(1)=-1,
所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,
解得a=-1,b=-1.
(2)证明 由(1)知,g(x)=-++x,
则f(x)+g(x)≥⇔1---+x≥0.
令h(x)=1---+x(x≥1),
则h(1)=0,h′(x)=+++1=++1.
因为x≥1,所以h′(x)=++1>0,
所以h(x)在[1,+∞)上单调递增,
所以当x≥1时,h(x)≥h(1)=0,
即1---+x≥0,
所以当x≥1时,f(x)+g(x)≥.
3.(2022·雅礼中学调研)已知函数f(x)=ax2-xln x.
(1)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若a=e,证明:当x>0时,f(x)<xex+.
(1)解 由题意知,f′(x)=2ax-ln x-1.
因为函数f(x)在(0,+∞)上单调递增,
所以当x>0时,f′(x)≥0,即2a≥在x>0时恒成立.
令g(x)=(x>0),
则g′(x)=-,
易知g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
则g(x)max=g(1)=1,
所以2a≥1,即a≥.
故实数a的取值范围是.
(2)证明 若a=e,要证f(x)<xex+,
只需证ex-ln x<ex+,
即ex-ex<ln x+.
令h(x)=ln x+(x>0),
则h′(x)=,
易知h(x)在上单调递减,
在上单调递增,
则h(x)min=h=0,
所以ln x+≥0.
再令φ(x)=ex-ex,则φ′(x)=e-ex,
易知φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
则φ(x)max=φ(1)=0,
所以ex-ex≤0.
因为h(x)与φ(x)不同时为0,
所以ex-ex<ln x+,故原不等式成立.
4.已知函数f(x)=ln x-ax(a∈R).
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)证明:ex-e2ln x>0.
(1)解 f(x)的定义域为(0,+∞),
f′(x)=-a=,
当a≤0时,f′(x)>0,
∴f(x)在(0,+∞)上单调递增,
当a>0时,令f′(x)=0,得x=,
∴x∈时,f′(x)>0;x∈时,f′(x)<0,
∴f(x)在上单调递增,在上单调递减.
(2)证明 法一 要证ex-e2ln x>0,
即证ex-2>ln x,
令φ(x)=ex-x-1,∴φ′(x)=ex-1.
令φ′(x)=0,得x=0.
∴x∈(-∞,0)时,φ′(x)<0;x∈(0,+∞)时,φ′(x)>0,
∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴φ(x)min=φ(0)=0,
即ex-x-1≥0,
即ex≥x+1,当且仅当x=0时取“=”.
同理可证ln x≤x-1,当且仅当x=1时取“=”.
由ex≥x+1(当且仅当x=0时取“=”),
可得ex-2≥x-1(当且仅当x=2时取“=”),
又ln x≤x-1,即x-1≥ln x,当且仅当x=1时取“=”,
所以ex-2≥x-1≥ln x且两等号不能同时成立,
故ex-2>ln x.即证原不等式成立.
法二 令φ(x)=ex-e2ln x,φ(x)的定义域为(0,+∞),φ′(x)=ex-,
令h(x)=ex-,
∴h′(x)=ex+>0,
∴φ′(x)在(0,+∞)上单调递增.
又φ′(1)=e-e2<0,
φ′(2)=e2-e2=e2>0,
故∃x0∈(1,2),使φ′(x0)=0,
即ex0-=0,
即ex0=,
∴当x∈(0,x0)时,φ′(x)<0;
当x∈(x0,+∞)时,φ′(x0)>0,
∴φ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
∴φ(x)min=φ(x0)=ex0-e2ln x0=-e2ln x0=-e2ln =-e2(2-x0)=e2=e2·>0,
故φ(x)>0,即ex-e2ln x>0,即证原不等式成立.
新高考数学一轮复习课时过关练习第08章 平面解析几何圆锥曲线的综合问题第4课时 证明及探索性问题 (含解析): 这是一份新高考数学一轮复习课时过关练习第08章 平面解析几何圆锥曲线的综合问题第4课时 证明及探索性问题 (含解析),共12页。
新高考数学一轮复习课时过关练习第03章 导数的综合问题第4课时 双变量问题 (含解析): 这是一份新高考数学一轮复习课时过关练习第03章 导数的综合问题第4课时 双变量问题 (含解析),共15页。试卷主要包含了已知f=2x+1-eax等内容,欢迎下载使用。
新高考数学一轮复习课时过关练习第03章 导数的综合问题第1课时 不等式恒(能)成立问题 (含解析): 这是一份新高考数学一轮复习课时过关练习第03章 导数的综合问题第1课时 不等式恒(能)成立问题 (含解析),共14页。