黑龙江省绥化市绥棱县第一中学2022-2023学年高二下学期开学考试数学试题
展开SL 2022~2023学年度下学期高二开学初考试卷
数学
2023.2
考生注意:
1.本试卷分选择题和非选择题两部分。满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本卷命题范围:人教A版选择性必修第一册第三章,选择性必修第二册第四、五章。
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线的准线方程为( )
A. B. C. D.
2.已知数列的一个通项公式为,且,则等于( )
A. B. C.5 D.6
3.某质点的位移函数是(),则当时,它的速度对t的瞬时变化率(即加速度)是( )
A. B. C. D.
4.数列是等比数列,若、的等差中项为4,、的等差中项为,则的公比为( )
A.2 B.4 C. D.
5.数列,满足,,,则的前10项之和为( )
A. B. C. D.
6.已知椭圆()的左、右焦点分别为,,点P在C上,O为坐标原点,若满足的点P有四个,则m的取值范围为( )
A. B.
C. D.
7.已知函数,若,,,则( )
A. B. C. D.
8.已知双曲线(,),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点M在以为直径的圆外,则双曲线离心率的取值范围是( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合要求,全部选对的得5分,选对但不全的得2分,有选错的得0分。
9.已知函数及其导数,若存在,使得,则称是的一个“巧值点”.下列函数中,有“巧值点”的是( )
A. B. C. D.
10.在公比q为整数的等比数列中,是数列的前n项和,若,,则下列说法正确的是( )
A. B.数列是等比数列
C. D.数列是公差为2的等差数列
11.已知椭圆的左、右焦点为,,点P在椭圆上,且不与椭圆的左、右顶点重合,则下列关于的说法正确的有( )
A.的周长为
B.当时,的边
C.当时,的面积为
D.椭圆上有且仅有6个点P,使得为直角三角形
12.已知函数,若方程有3个不同的实根,,(),则的取值可以为( )
A. B. C. D.0
三、填空题:本大题共4小题,每小题5分,共20分。
13.函数在区间上的平均变化率为________.
14.已知等比数列是递减数列,是的前n项和.若,是方程的两个根,则________.
15.已知函数,其导函数记为,则________.
16.已知抛物线上有,A,B三点,且直线过抛物线的焦点F,抛物线的准线与轴交于点C,若,则________,________.(第一空2分,第二空3分)
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)
已知公差不为0的等差数列的前3项和,且,,成等比数列.
(1)求数列的通项公式;
(2)设为数列的前n项和,求.
18.(本小题满分12分)
已知函数.
(1)求曲线在点处的切线方程;
(2)求过点且与曲线相切的直线方程.
19.(本小题满分12分)
已知抛物线C:()的焦点为F,过F且倾斜角为45°的直线与抛物线C相交于P,Q两点,且线段被直线平分.
(1)求p的值;
(2)直线是抛物线C的切线,A为切点,且,求以A为圆心且与相切的圆的标准方程.
20.(本小题满分12分)
已知数列中,,().
(1)求的通项公式;
(2)数列满足,设为数列的前n项和,求使恒成立的最小的整数.
21.(本小题满分12分)
如图,在平面直角坐标系中,已知等轴双曲线E:(,)的左顶点为A,过右焦点F且垂直于x轴的直线与E交于B,C两点,若的面积为.
(1)求双曲线E的方程;
(2)若直线与双曲线E的左,右两支分别交于M,N两点,与双曲线E的两条渐近线分别交于P,Q两点,求的取值范围.
22.(本小题满分12分)
函数().
(1)试讨论函数的极值点的个数;
(2)若在定义域内恒成立,证明:
①;
②.
SL2022~2023学年度下学期高二开学初考试卷·数学
参考答案、提示及评分细则
1.A ∵抛物线的方程化成标准形式,∴准线方程为.
2.B ,,.
3.A 由题可得,即,∴,∴.故选A.
4.C 依题意,,,故,故.
5.D 因为,,故,故的前10项之和为,故选D.
6.A 由椭圆可知,,所以.又知,所以.设C的上顶点为A,要使满足条件的点P有四个,则,易知为等腰三角形,当时,则,即,要满足,则,所以,且.故选A.
7.D 因为,所以,所以当时,,函数单调递增;当时,,函数单调递减,又,,,即,所以,故选D.
8.B 易知直线方程为,其中,因此,设点,,所以,解得,得.因为双曲线的右顶点在以为直径的圆外部,所以,即,将代入,并化简整理,得,两边都除以,整理得,又,解得.
9.ACD 对于A,,,由,解得或2,因此此函数有“巧值点”0,2;
对于B,,,由,得,无解,因此此函数无“巧值点”;
对于C,,,由,分别画出,的图象,由图象可知两函数图象有交点,因此此函数有“巧值点”;
对于D,,,由解得,因此此函数有“巧值点”.故选ACD.
10.AC ∵在公比q为整数的等比数列中,是数列的前n项和,,,解得,,∴,,故A正确,则,∴数列不是等比数列,故B不正确;,故C正确;∵,∴,∴数列不是公差为2的等差数列,故D错误.故选AC.
11.AD 根据椭圆方程可得,,.对于A,的周长为,故A正确;对于B,当时,的边,故B错误;对于C,当时,的面积,故C错误;对于D,设,,当时,则有解得,此时点P为上下顶点,当时,有两个点,当时,有两个点,故D正确.故选AD.
12.BC ,当或时,;当时,,
所以在和上都递增,在上递减,
,,
当时,,时,,
所以当时,有3个不同的实根,
设3个不同的实根为,,(),则,.
.
设(),则,
当时,,单调递减;当时,,单调递增,
所以,又,,
所以的取值范围是,即为的取值范围.故选BC.
13. .
14. ∵,是方程的两根,且,∴,,则公比,因此.
15.2 函数,则,显然为偶函数,令,显然为奇函数,又为偶函数,所以,,所以.
16.8 由题意,将点代入,得,解得,所以抛物线的方程为.如图,过A作于M,过B作于N,过B作于,连接,设,则由,得,,,所以,所以,解得,所以,,,在中,由余弦定理得,所以.
17.解:(1)设等差数列的公差为(),
由题意知整理得·····································································3分
解得或0(舍去),故,所以.··························································6分
(2)设,
所以.···········································································10分
18.解:(1)由,,
则曲线在点处的切线方程为.···························································6分
(2)设切点的坐标为,则所求切线方程为,
代入点的坐标得,解得或,
当时,所求直线方程为.
由(1)知过点且与曲线相切的直线方程为或.··············································12分
19.解:由题意可知,································································1分
设,,则.·········································································2分
(1)由,得,∴,即.·······························································6分
(2)设直线的方程为,代入,
得,··············································································8分
∵为抛物线的切线,∴,
解得,∴.·········································································10分
∵A到直线的距离,··································································11分
∴所求圆的标准方程为.·····························································12分
20.解:(1)由(),得,
∴,
∴数列是以3为公比,以为首项的等比数列,···············································4分
∴,即.··········································································6分
(2)由题意得.
,
,················································································9分
两式相减得:
,
∴,·············································································11分
又∵,而,
∴,∴.··········································································12分
21.解:(1)因为双曲线E:(,)为等轴双曲线,可得.····································1分
设双曲线的焦距为,,故,即.
因为过右焦点F,且垂直于x轴,将代入双曲线的方程可得,故.·································3分
又的面积为,即,
解得.故双曲线的方程为.····························································5分
(2)由题意可得直线与双曲线的左右两支分别交于M,N两点,联立可得,所以,,可得,············7分
且,,所以
,
联立可得,同理可得,
所以,···········································································10分
所以,其中,
所以.···········································································12分
22.(1)解:由题意得,
所以,令,
当,即时,对恒成立,
即对恒成立,此时没有极值点;·························································2分
当,即或时,
1)时,设方程的两个不同实根为,,不妨设,
则,,故,
所以或时;在时,
故,是函数的两个极值点.
2)时,设方程的两个不同实根为,,
则,,故,,
所以时,,故函数没有极值点.·························································4分
综上,当时,函数有两个极值点;当时,函数没有极值点.····································5分
(2)证明:①,
由,得对于恒成立,设,
,
∵,∴时,,单调递减,时,,单调递增,
∴,∴.··········································································9分
②由①知,当时有,即(*),当且仅当时取等号.·········································10分
以下证明:,设,,
∴当时,单调递减,时,单调递增,
∴,∴(**),当且仅当时取等号.
由于(*)(**)等号不同时成立,可得,
所以.···········································································12分
黑龙江省绥化市绥棱县第一中学2023-2024学年高二上学期9月月考数学试题: 这是一份黑龙江省绥化市绥棱县第一中学2023-2024学年高二上学期9月月考数学试题,共12页。试卷主要包含了本卷主要考查内容,如图,椭圆,已知直线等内容,欢迎下载使用。
黑龙江省绥化市绥棱县第一中学2022-2023学年高一下学期开学考试数学试题: 这是一份黑龙江省绥化市绥棱县第一中学2022-2023学年高一下学期开学考试数学试题,共11页。试卷主要包含了 函数, 德国著名的天文学家开普勒说过, 已知,且,则下列说法正确的是等内容,欢迎下载使用。
2022-2023学年黑龙江省绥化市绥棱县第一中学高一下学期4月月考数学试题含答案: 这是一份2022-2023学年黑龙江省绥化市绥棱县第一中学高一下学期4月月考数学试题含答案,共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。