搜索
    上传资料 赚现金
    英语朗读宝
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      1_9.1 直线和圆(习题).docx
    • 1_9.1 直线和圆(十年高考).docx
    1_9.1 直线和圆(习题)第1页
    1_9.1 直线和圆(习题)第2页
    1_9.1 直线和圆(习题)第3页
    1_9.1 直线和圆(十年高考)第1页
    1_9.1 直线和圆(十年高考)第2页
    1_9.1 直线和圆(十年高考)第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    27_专题九91直线和圆(习题+十年高考)

    展开

    这是一份27_专题九91直线和圆(习题+十年高考),文件包含1_91直线和圆习题docx、1_91直线和圆十年高考docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
    专题九 平面解析几何
    9.1 直线和圆
    基础篇
    考点一 直线的方程
    考向一 直线的倾斜角与直线方程
    1.(2022湖南永州一中月考,5)过圆(x+2)2+y2=4的圆心且与直线x+y=0垂直的直线方程为(  )
    A.x+y-2=0    B.x-y-2=0
    C.x-y+2=0    D.x+y+2=0
    答案 C 
    2.(多选)(2022石家庄二中开学考,12)瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点A(-4,0),B(0,4),其欧拉线方程为x-y+2=0,则顶点C的坐标可以是(  )
    A.(2,0)    B.(0,2)    
    C.(-2,0)    D.(0,-2)
    答案 AD 
    3.(2023届天津咸水沽一中开学检测,14)若过点P(1-a,1+a)与点Q(3,2a)的直线的倾斜角是钝角,则实数a的取值范围是    . 
    答案 (-2,1)
    考向二 两条直线间的位置关系
    1.(2022山东青岛胶州一中月考,3)已知直线l1:a2x+y-2=0与直线l2:x-(2a+3)y+1=0垂直,则a=(  )
    A.3    B.1或-3    C.-1    D.3或-1
    答案 D 
    2.(多选)(2023届山东青岛调研,9)已知直线l1:4x-3y+4=0,l2:(m+2)x-(m+1)y+2m+5=0(m∈R),则(  )
    A.直线l2过定点(-3,-1)
    B.当m=1时,l1⊥l2
    C.当m=2时,l1∥l2
    D.当l1∥l2时,两直线l1,l2之间的距离为1
    答案 ACD 
    3.(2023届贵州遵义新高考协作体入学质量监测,13)直线l1:mx+2y+1=0,l2:x+(m-1)y-1=0,若l1∥l2,则m=    . 
    答案 2
    4.(2022辽宁六校期初联考,13)已知直线l1:y=(2a2-1)x-2与直线l2:y=7x+a平行,则a=    . 
    答案 2
    考向三 距离公式
    1.(2020课标Ⅲ文,8,5分)点(0,-1)到直线y=k(x+1)距离的最大值为(  )
    A.1    B.2    C.3    D.2
    答案 B 
    2.(2020课标Ⅱ理,5,5分)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为(  )
    A.55    B.255    C.355    D.455
    答案 B 
    3.(多选)(2022重庆梁平调研,9)已知直线l:3x-y+1=0,则下列结论正确的是(  )
    A.直线l的倾斜角是π3
    B.若直线m:x-3y+1=0,则l⊥m
    C.点(3,0)到直线l的距离是2
    D.过点(23,2)与直线l平行的直线方程是3x-y-4=0
    答案 ACD 
    4.(2023届长沙雅礼中学月考,15)对圆(x-1)2+(y-1)2=1上任意一点P(x,y),若点P到直线l1:3x-4y-9=0和l2:3x-4y+a=0的距离和都与x,y无关,则a的取值范围为    . 
    答案 [6,+∞)


    考点二 圆的方程
    1.(2023届河南安阳调研,5)过点(0,2)且与直线y=x-2相切,圆心在x轴上的圆的方程为(  )
    A.(x+1)2+y2=3    B.(x+1)2+y2=5
    C.(x+2)2+y2=4    D.(x+2)2+y2=8
    答案 D 
    2.(多选)(2023届辽宁鞍山质量监测,11)在平面直角坐标系xOy中,A(1,0),B(-2,0),点P满足|PA||PB|=12,设点P的轨迹为C,则(  )
    A.C的周长为4π
    B.PO(O,P不重合时)平分∠APB
    C.△ABP面积的最大值为6
    D.当AP⊥AB时,直线BP与轨迹C相切
    答案 ABD 
    3.(多选)(2022广东珠海月考,10)在平面内,已知线段AB的长度为4,则满足下列条件的点P的轨迹为圆的是(  )
    A.∠APB=90°    B.|PA|2+|PB|2=10
    C.PA·PB=-6    D.|PA|=3|PB|
    答案 BD 
    4.(2021广东珠海一模,14)若方程x2+y2+λxy+2kx+4y+5k+λ=0表示圆,则k的取值范围为       . 
    答案 (-∞,1)∪(4,+∞)
    5.(2022全国甲文,14,5分)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在☉M上,则☉M的方程为       . 
    答案 (x-1)2+(y+1)2=5
    6.(2022全国乙,理14,文15,5分)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为        . 
    答案 (x-2)2+(y-1)2=5或x2+y2-4x-6y=0或x2+y2-83x−143y=0或x2+y2-165x−2y−165=0

    考点三 直线与圆的位置关系
    1.(多选)(2021新高考Ⅱ,11,5分)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是(  )
    A.若点A在圆C上,则直线l与圆C相切
    B.若点A在圆C内,则直线l与圆C相离
    C.若点A在圆C外,则直线l与圆C相离
    D.若点A在直线l上,则直线l与圆C相切
    答案 ABD 
    2.(2023届浙南名校联盟联考,13)已知直线l:y=x+1与圆C:(x-1)2+y2=r2(r>0)相切,则r=    . 
    答案 2
    3.(2023届天津咸水沽一中开学检测,12)直线l过点(4,0)且与圆(x-1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为            . 
    答案 x=4或5x-12y-20=0
    4.(2022新高考Ⅱ,15,5分)设点A(-2,3),B(0,a),若直线AB关于y=a对称的直线与圆(x+3)2+(y+2)2=1有公共点,则a的取值范围是      . 
    答案 13,32
    5.(2019浙江,12,6分)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=    ,r=    . 
    答案 -2 5
    6.(2020浙江,15,6分)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x-4)2+y2=1均相切,则k=    ,b=    . 
    答案 33 −233
    考点四 圆与圆的位置关系
    1.(2023届海南琼海嘉积中学月考,3)圆O1:x2+y2=1与圆O2:x2+y2-4x+1=0的位置关系为(  )
    A.相交    B.外离    C.外切    D.内切
    答案 A 
    2.(2023届安徽十校联考,8)已知直线l:mx+y-3m-2=0与圆M:(x-5)2+(y-4)2=25交于A,B两点,当弦AB的长最短时,圆M与圆N:(x+2m)2+y2=9的位置关系是(  )
    A.内切    B.外离    C.外切    D.相交
    答案 B 
    3.(2022江苏苏州中学月考,6)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度为22,则圆M与圆N:x2+y2-6x-12y-4=0的位置关系是(  )
    A.内切    B.外切    
    C.相交    D.外离
    答案 A 
    4.(多选)(2022广东茂名月考,10)已知圆C:x2+y2-6x-8y+21=0,O为坐标原点,以OC为直径的圆C'与圆C交于A,B两点,则(  )
    A.圆C'的方程为x2+y2-3x-4y=0
    B.直线AB的方程为3x-4y-21=0
    C.OA,OB均与圆C相切
    D.四边形CAOB的面积为421
    答案 AC 
    5.(2022山东威海5月模拟,14)圆x2+y2+4x=0与圆x2+y2+4y=0的公共弦长为    . 
    答案 22
    综合篇
    考法一 对称问题
    1.(2023届江苏扬州高邮学情调研,4)与直线3x-y+1=0关于y轴对称的直线的方程为(  )
    A.x-3y+1=0    B.3x+y-1=0
    C.x+3y+1=0    D.3x+y+1=0
    答案 B 
    2.(2022石家庄二中开学考,2)若直线l1:y=kx-k+1与直线l2关于点(2,3)对称,则直线l2过定点(  )
    A.(-3,5)    B.(3,-5)    
    C.(3,5)    D.(5,3)
    答案 C 
    3.(2022山东滕州一中月考,3)若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=(  )
    A.12    B.−12    C.1    D.-1
    答案 A 
    4.(2022湖北孝感模拟,6)已知从点(-5,3)发出的一束光线,经x轴反射后,反射光线恰好平分圆:(x-1)2+(y-1)2=5的圆周,则反射光线所在的直线方程为(  )
    A.2x-3y+1=0    B.2x-3y-1=0
    C.3x-2y+1=0    D.3x-2y-1=0
    答案 A 
    5.(2022广东实验中学质检,6)直线3x-2y=0关于点13,0对称的直线方程为(  )
    A.2x-3y=0    B.3x-2y-2=0
    C.x-y=0    D.2x-3y-2=0
    答案 B 
    6.(2022南京3月模拟,3)圆x2+y2-2x+4y-4=0关于直线x+y-1=0对称的圆的方程是(  )
    A.(x-3)2+y2=16    B.x2+(y-3)2=9
    C.x2+(y-3)2=16    D.(x-3)2+y2=9
    答案 D 
    7.(2023届福建部分名校联考,7)在唐诗“白日登山望烽火,黄昏饮马傍交河”中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为(x+1)2+(y-1)2≤1,若将军从点(1,0)处出发,河岸线所在直线方程为x+2y-5=0,并假定将军只要到达军营所在区域即认为回到军营,则当“将军饮马”的总路程最短时,将军去往河边饮马的行走路线所在的直线方程为(  )
    A.12x+5y-12=0    B.21x+2y-21=0
    C.4x+y-4=0    D.11x+2y-11=0
    答案 B 
    考法二 与圆的切线相关的问题
    1.(2020课标Ⅲ理,10,5分)若直线l与曲线y=x和圆x2+y2=15都相切,则l的方程为(  )
    A.y=2x+1    B.y=2x+12    
    C.y=12x+1    D.y=12x+12
    答案 D 
    2.(2021江苏南通期末,7)在平面直角坐标系xOy中,已知圆C:(x-1)2+y2=4,若直线l:x+y+m=0上有且只有一个点P满足:过点P作圆C的两条切线PM,PN,切点分别为M,N,且使得四边形PMCN为正方形,则正实数m的值为 (  )
    A.1    B.22    C.3    D.7
    答案 C 
    3.(2015山东,9,5分)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为(  )
    A.-53或-35    B.−32或-23    
    C.-54或-45    D.−43或-34
    答案 D 
    4.(多选)(2022广东珠海二中月考,11)过点P(3,4)作圆C:x2+y2=4的两条切线,切点分别为A,B,则下列说法正确的是(  )
    A.|AB|=2215
    B.AB所在直线的方程为3x+4y-4=0
    C.四边形PACB的外接圆方程为x2+y2-3x-4y=0
    D.△PAB的面积为422125
    答案 BCD 
    5.(2022全国甲理,14,5分)若双曲线y2-x2m2=1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=    . 
    答案 33
    6.(2022新高考Ⅰ,14,5分)写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程    . 
    答案 x=-1(或3x+4y-5=0或7x-24y-25=0)
    7.(2023届江苏扬州高邮学情调研,18)圆C:(x-2)2+(y-1)2=9,过点P(-1,3)向圆C引两切线,A,B为切点.
    (1)求切线的方程;
    (2)求PA·PB的值.
    解析 (1)若过点P的直线斜率不存在,切线方程为x=-1,符合题意;
    若过点P的直线斜率存在,设切线方程为y-3=k(x+1),即kx-y+k+3=0,圆心C到切线的距离为|3k+2|k2+1=3,解得k=512,则切线方程为5x-12y+41=0.
    综上,切线方程为x=-1或5x-12y+41=0.
    (2)|PC|=13,|PA|=|PB|=PC2−r2=13−9=2,
    则sin∠CPA=|CA||PC|=313,
    cos∠APB=1-2sin2∠CPA=1-2×3132=−513,
    ∴PA·PB=|PA||PB|cos∠APB=2×2×−513=−2013.
    考法三 与圆有关的最值问题
    1.(2020北京,5,4分)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为(  )
    A.4    B.5    C.6    D.7
    答案 A 
    2.(2020课标Ⅰ文,6,5分)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为(  )
    A.1    B.2    C.3    D.4
    答案 B 
    3.(多选)(2023届江苏扬州高邮学情调研,12)过点P(-1,0)的直线l与圆C:x2+y2-4y-12=0交于A,B两点,线段MN是圆C的一条动弦,且|MN|=27,则(  )
    A.|AB|的最小值为211
    B.△ABC面积的最大值为8
    C.△ABC面积的最大值为55
    D.|PM+PN|的最小值为6-25
    答案 ACD 
    4.(多选)(2023届南京学情调研,11)已知直线l:x+1=0,点P(1,0),圆心为M的动圆经过点P,且与直线l相切,则(  )
    A.点M的轨迹为抛物线
    B.圆M面积的最小值为4π
    C.当圆M被y轴截得的弦长为25时,圆M的半径为3
    D.存在点M,使得|MO||MP|=233,其中O为坐标原点
    答案 ACD 
    5.(多选)(2021新高考Ⅰ,11,5分)已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则(  )
    A.点P到直线AB的距离小于10
    B.点P到直线AB的距离大于2
    C.当∠PBA最小时,|PB|=32
    D.当∠PBA最大时,|PB|=32
    答案 ACD 
    6.(2022四省八校期中,10)若倾斜角为锐角的直线l:y=kx+2+1与圆C:x2+y2-2x-2y-2=0交于A、B两点,当△ABC的面积最大时,直线l的斜率为(  )
    A.22    B.2    C.2+1    D.1
    答案 A 
    7.(2023届广东六校联考,15)已知☉C:x2+y2-2x-2y-2=0,直线l:x+2y+2=0,M为直线l上的动点,过点M作☉C的切线MA,MB,切点为A,B,当四边形MACB的面积取最小值时,直线AB的方程为      . 
    答案 x+2y+1=0
    8.(2023届湖北起点考试,15)已知圆C:(x-3)2+(y-4)2=4,过点P(3,3)作不过圆心的直线交圆C于A,B两点,则△ABC面积的取值范围是    . 
    答案 (0,3]

    相关试卷

    31_专题九95圆锥曲线的综合问题(习题+十年高考+检测):

    这是一份31_专题九95圆锥曲线的综合问题(习题+十年高考+检测),文件包含1_95圆锥曲线的综合问题十年高考docx、1_95圆锥曲线的综合问题习题docx、9_09-专题九平面解析几何检测docx等3份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。

    30_专题九94抛物线及其性质(习题+十年高考):

    这是一份30_专题九94抛物线及其性质(习题+十年高考),文件包含1_94抛物线及其性质习题docx、1_94抛物线及其性质十年高考docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    29_专题九93双曲线及其性质(习题+十年高考):

    这是一份29_专题九93双曲线及其性质(习题+十年高考),文件包含1_93双曲线及其性质习题docx、1_93双曲线及其性质十年高考docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map