终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编

    立即下载
    加入资料篮
    专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编第1页
    专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编第2页
    专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编第3页
    还剩76页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编

    展开

    这是一份专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编,共79页。试卷主要包含了如图,是的直径,,则,如图,四边形内接于,,,如图,都是的半径,交于点D等内容,欢迎下载使用。
    专题27圆的有关性质三年(2021-2023)中考数学真题分项汇编
    三年(2021-2023)中考数学真题分项汇编
    专题27圆的有关性质
    一.选择题(共23小题)
    (2023•吉林)
    1.如图,是的弦,是的半径,点P为上任意一点(点P不与点B重合),连接.若,则的度数可能是(    )
      
    A. B. C. D.
    (2023•赤峰)
    2.如图,圆内接四边形中,,连接,,,,.则的度数是(    )
      
    A. B. C. D.
    3.如图,点A,B,C在上,若,则的度数为(    )
      
    A. B. C. D.
    (2023•广东)
    4.如图,是的直径,,则(   )
      
    A. B. C. D.
    (2023•广西)
    5.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为,拱高约为,则赵州桥主桥拱半径R约为(    )
      
    A. B. C. D.
    (2023•广元)
    6.如图,是的直径,点C,D在上,连接,若,则的度数是(  )

    A. B. C. D.
    (2023•温州)
    7.如图,四边形内接于,,.若,,则的度数与的长分别为(    )
      
    A.10°,1 B.10°, C.15°,1 D.15°,
    (2023•山西)
    8.如图,四边形内接于为对角线,经过圆心.若,则的度数为(    )
      
    A. B. C. D.
    (2023•宜昌)
    9.如图,都是的半径,交于点D.若,则的长为(    ).

    A.5 B.4 C.3 D.2
    (2023•枣庄)
    10.如图,在中,弦相交于点P,若,则的度数为(  )
      
    A. B. C. D.
    (2023•杭州)
    11.如图,在中,半径互相垂直,点在劣弧上.若,则(    )
      
    A. B. C. D.
    (2023•湖北)
    12.如图,在中,直径与弦相交于点P,连接,若,,则(    )
      
    A. B. C. D.
    (2022•泰安)
    13.如图,是⊙的直径,,,,则⊙的半径为(  )

    A. B. C. D.
    (2022•贵阳)
    14.如图,已知,点为边上一点,,点为线段的中点,以点为圆心,线段长为半径作弧,交于点,连接,则的长是(    )

    A.5 B. C. D.
    (2022•温州)
    15.如图,是的两条弦,于点D,于点E,连结,.若,则的度数为(    )

    A. B. C. D.
    (2022•贵港)
    16.如图,⊙是的外接圆,是⊙的直径,点P在⊙上,若,则的度数是(    )

    A. B. C. D.
    (2022•株洲)
    17.如图所示,等边的顶点A在上,边与分别交于点,点F是劣弧上一点,且与不重合,连接,则的度数为(    )
      
    A. B. C. D.
    (2022•荆门)
    18.如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为(   )

    A.36 B.24 C.18 D.72
    (2021•青海)
    19.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于,两点,他测得“图上”圆的半径为10厘米,厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为(    ).

    A.1.0厘米/分 B.0.8厘米/分 C.12厘米/分 D.1.4厘米/分
    (2021•攀枝花)
    20.如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为(  )

    A.2 B. C.3 D.
    (2021•吉林)
    21.如图,四边形内接于,点P为边AD上任意一点(点P不与点 A 、 重合)连接CP,若,则的度数可能为( )  

    A.30° B.54° C.50° D.65°
    (2021•雅安)
    22.如图,四边形为⊙的内接四边形,若四边形为菱形,为(    ).

    A.45° B.60° C.72° D.36°
    (2021•眉山)
    23.如图,在以AB为直径的⊙O中,点C为圆上的一点,,弦于点E,弦AF交CE于点H,交BC于点G,若点H是AG的中点,则的度数为(  )

    A.18° B.21° C.22.5° D.30°
    二.填空题(共25小题)
    (2023•长沙)
    24.如图,点A,B,C在半径为2的上,,,垂足为E,交于点D,连接,则的长度为 .

    (2023•深圳)
    25.如图,在中,为直径,C为圆上一点,的角平分线与交于点D,若,则 °.
      
    (2023•东营)
    26.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,为的直径,弦,垂足为点,寸,寸,则直径的长度是 寸.

    (2023•郴州)
    27.如图,某博览会上有一圆形展示区,在其圆形边缘的点处安装了一台监视器,它的监控角度是,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.
      
    (2023•绍兴)
    28.如图,四边形内接于圆,若,则的度数是 .

    (2023•南充)
    29.如图,是的直径,点D,M分别是弦,弧的中点,,则的长是 .
      
    (2022•锦州)
    30.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为 .

    (2022•上海)
    31.如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 .(结果保留)

    (2022•日照)
    32.一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为 .
      
    (2022•阿坝州)
    33.如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为 °.

    (2022•湖州)
    34.如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是 .

    (2022•自贡)
    35.一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦长20厘米,弓形高为2厘米,则镜面半径为 厘米.

    (2022•黄石)
    36.如图,圆中扇子对应的圆心角()与剩余圆心角的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则的度数是 .

    (2022•荆州)
    37.如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 cm(玻璃瓶厚度忽略不计).

    (2021•盘锦)
    38.如图,在平面直角坐标系中,点A在轴负半轴上,点B在轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是

    (2021•黑龙江)
    39.如图,在中,是直径,弦的长为5cm,点在圆上,且,则的半径为 .

    (2021•天津)
    40.如图,在每个小正方形的边长为1的网格中,的顶点A,C均落在格点上,点B在网格线上.

    (Ⅰ)线段的长等于 ;
    (Ⅱ)以为直径的半圆的圆心为O,在线段上有一点P,满足,请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明) .
    (2021•黑龙江)
    41.如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为 .

    (2021•宿迁)
    42.如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在上,边AB、AC分别交于D、E两点﹐点B是的中点,则∠ABE= .

    (2021•成都)如图,
    43.如图,在平面直角坐标系中,直线与相交于A,B两点,且点A在x轴上,则弦的长为 .

    (2022•苏州)
    44.如图,AB是的直径,弦CD交AB于点E,连接AC,AD.若,则 °

    (2022•牡丹江)
    45.的直径,AB是的弦,,垂足为M,,则AC的长为 .
    (2021•黔东南州)
    46.小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在园的半径,小明连接瓦片弧线两端AB,量的弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为 cm.

    (2021•德阳)
    47.在锐角三角形ABC中,∠A=30°,BC=2,设BC边上的高为h,则h的取值范围是 .
    (2023•成都)
    48.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(取3.14,取1.73)
      
    三.解答题(共12小题)
    (2023•北京)
    49.如图,圆内接四边形的对角线,交于点,平分,.
          
    (1)求证平分,并求的大小;
    (2)过点作交的延长线于点.若,,求此圆半径的长.
    (2023•内蒙古)
    50.如图,是的直径,是弦,是上一点,是延长线上一点,连接.
      
    (1)求证:;(请用两种证法解答)
    (2)若,的半径为3,,求的长.
    (2023•武汉)
    51.如图,都是的半径,.
      
    (1)求证:;
    (2)若,求的半径.
    (2022•宜昌)
    52.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.

    (1)直接判断与的数量关系;
    (2)求这座石拱桥主桥拱的半径(精确到).
    (2022•广东)
    53.如图,四边形内接于,为的直径,.

    (1)试判断的形状,并给出证明;
    (2)若,,求的长度.
    (2022•南通)
    54.如图,四边形内接于,为的直径,平分,点E在的延长线上,连接.

    (1)求直径的长;
    (2)若,计算图中阴影部分的面积.
    (2022•武汉)
    55.如图,以为直径的经过的顶点C,,分别平分和,的延长线交于点D,连接.

    (1)求证:;
    (2)若,,求BC的长.
    (2022•六盘水)
    56.牂狗江“佘月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,下图是月亮洞的截面示意图.

    (1)科考队测量出月亮洞的洞宽约是28m,洞高约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径的长(结果精确到0.1m);
    (2)若,点在上,求的度数,并用数学知识解释为什么“齐天大圣”点在洞顶上巡视时总能看清洞口的情况.
    (2021•安徽)
    57.如图,圆O中两条互相垂直的弦AB,CD交于点E.
    (1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
    (2)点F在CD上,且CE=EF,求证:.

    (2021•徐州)
    58.如图,为的直径,点在上,与交于点.连接.求证:
      
    (1);
    (2)四边形是菱形.
    (2021•临沂)
    59.如图,已知在⊙O中, ,OC与AD相交于点E.求证:
    (1)AD∥BC
    (2)四边形BCDE为菱形.

    (2020•南京)
    60.如图,在中,,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作,交⊙O于点F,求证:
    (1)四边形DBCF是平行四边形
    (2)


    参考答案:
    1.D
    【分析】利用圆周角定理求得的度数,然后利用三角形外角性质及等边对等角求得的范围,继而得出答案.
    【详解】解:如图,连接,
      




    ∵点P为上任意一点(点P不与点B重合),



    故选:D.
    【点睛】本题考查圆与三角形外角性质的综合应用,结合已知条件求得的范围是解题的关键.
    2.A
    【分析】根据圆内接四边形对角互补得出,根据圆周角定理得出,根据已知条件得出,进而根据圆周角定理即可求解.
    【详解】解:∵圆内接四边形中,,



    ∴,

    ∴,
    故选:A.
    【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.
    3.D
    【分析】直接根据圆周角定理即可得.
    【详解】解:∵,
    ∴由圆周角定理得:,
    故选:D.
    【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.
    4.B
    【分析】根据圆周角定理可进行求解.
    【详解】解:∵是的直径,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴;
    故选B.
    【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.
    5.B
    【分析】由题意可知,,,主桥拱半径R,根据垂径定理,得到,再利用勾股定理列方程求解,即可得到答案.
    【详解】解:如图,由题意可知,,,主桥拱半径R,

    是半径,且,

    在中,,

    解得:,
    故选B
      
    【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.
    6.C
    【分析】根据圆周角定理计算即可.
    【详解】解:∵,
    ∴,
    ∴,
    故选:C.
    【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.
    7.C
    【分析】过点O作于点E,由题意易得,然后可得,,,进而可得,最后问题可求解.
    【详解】解:过点O作于点E,如图所示:
      
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,,
    ∴,,,
    ∴,,,
    ∴,
    ∴,
    ∴;
    故选C.
    【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.
    8.B
    【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.
    【详解】解:∵,
    ∴,
    ∵为圆的直径,
    ∴,
    ∴;
    故选:B.
    【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键.
    9.B
    【分析】根据等腰三角形的性质得出根据勾股定理求出,进一步可求出的长.
    【详解】解:∵
    ∴点为的中点,

    ∴,
    由勾股定理得,


    故选:B.
    【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键
    10.A
    【分析】根据圆周角定理,可以得到的度数,再根据三角形外角的性质,可以求出的度数.
    【详解】解:,



    故选:A.
    【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出的度数.
    11.D
    【分析】根据互相垂直可得所对的圆心角为,根据圆周角定理可得,再根据三角形内角和定理即可求解.
    【详解】解:如图,
      
    半径互相垂直,

    所对的圆心角为,
    所对的圆周角,
    又,

    故选D.
    【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.
    12.D
    【分析】先根据圆周角定理得出,再由三角形外角和定理可知,再根据直径所对的圆周角是直角,即,然后利用进而可求出.
    【详解】解:∵,
    ∴,
    ∵,
    ∴,
    又∵为直径,即,
    ∴,
    故选:D.
    【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.
    13.D
    【分析】连接CO并延长CO交⊙于点E,连接AE,根据OA=OC,可得∠ACD=∠ACE,从而得到AE=AD=2,然后根据勾股定理,即可求解.
    【详解】解:如图,连接CO并延长CO交⊙于点E,连接AE,
    ∵OA=OC,
    ∴∠ACE=∠CAB,
    ∵,
    ∴∠ACD=∠ACE,
    ∴,
    ∴AE=AD=2,
    ∵CE是直径,
    ∴∠CAE=90°,
    ∴,
    ∴⊙的半径为.
    故选:D.

    【点睛】本题主要考查了圆周角定理,勾股定理,熟练掌握圆周角定理,勾股定理是解题的关键.
    14.A
    【分析】根据同圆半径相等可得为等腰三角形,又因为,可得为等边三角形,即可求得BE的长.
    【详解】连接OE,如图所示:

    ∵,点为线段的中点,
    ∴,
    ∵以点为圆心,线段长为半径作弧,交于点,
    ∴,
    ∴,
    ∴为等边三角形,
    即,
    故选:A.
    【点睛】本题考查了同圆半径相等,一个角为的等腰三角形,解题的关键是判断出为等边三角形.
    15.B
    【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.
    【详解】解:∵OD⊥AB,OE⊥AC,
    ∴∠ADO=90°,∠AEO=90°,
    ∵∠DOE=130°,
    ∴∠BAC=360°-90°-90°-130°=50°,
    ∴∠BOC=2∠BAC=100°,
    故选:B.
    【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    16.C
    【分析】根据圆周角定理得到,,然后利用互余计算出∠A的度数,从而得到的度数.
    【详解】解:∵AC是⊙O的直径,
    ∴,

    ∴,
    故选:C.
    【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    17.C
    【分析】根据圆的内接四边形对角互补及等边的每一个内角是,求出.
    【详解】解:四边形是内接四边形,

    ∵等边的顶点A在上,


    故选:C.
    【点睛】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.
    18.A
    【分析】连接OC,首先根据题意可求得OC=6,OE=3,根据勾股定理即可求得CE的长,再根据垂径定理即可求得CD的长,据此即可求得四边形ACBD的面积.
    【详解】解:如图,连接OC,

    ∵AB=12,BE=3,
    ∴OB=OC=6,OE=3,
    ∵AB⊥CD,
    ∴在Rt△COE中,,
    ∴CD=2CE=6,
    ∴四边形ACBD的面积=.
    故选:A.
    【点睛】本题考查了勾股定理的应用,垂径定理,熟练掌握和运用垂径定理是解决本题的关键.
    19.A
    【分析】首先过⊙O的圆心O作CD⊥AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.
    【详解】解:过⊙O的圆心O作CD⊥AB于C,交⊙O于D,连接OA,

    ∴AC=AB=×16=8(厘米),
    在Rt△AOC中,(厘米),
    ∴CD=OC+OD=16(厘米),
    ∵从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,
    ∴16÷16=1(厘米/分).
    ∴“图上”太阳升起的速度为1.0厘米/分.
    故选:A.
    【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.
    20.A
    【分析】根据对称性得到动点M的轨迹是在以A圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.
    【详解】解:连接AM,如图所示:

    ∵点B和M关于AP对称,
    ∴AB=AM=3,
    ∴M在以A圆心,3为半径的圆上,
    ∴当A,M,C三点共线时,CM最短,
    ∵在矩形ABCD中,AC=,
    AM=AB=3,
    ∴CM=5﹣3=2,
    故选:A.
    【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.
    21.D
    【分析】根据圆内接四边形对角互补,求得的度数,根据三角形的外角性质可得,进而可确定的范围,根据选项即可求解.
    【详解】解:∵四边形ABCD内接于,
    ∴ ,
    ∵ ,
    ∴ ,
    ∵ 为的外角,
    ∴ ,只有D满足题意.
    故选:D .
    【点睛】本题考查了圆内接四边形形对角互补,三角形的外角性质,求得的大小是解题的关键.
    22.B
    【分析】根据菱形性质,得;连接,根据圆的对称性,得;根据等边三角形的性质,得,再根据圆周角和圆心角的性质计算,即可得到答案.
    【详解】∵四边形为菱形

    连接

    ∵四边形为⊙的内接四边形

    ∴,为等边三角形



    故选:B.
    【点睛】本题考查了圆内接多边形、等边三角形、菱形的知识;解题的关键是熟练掌握圆的对称性、等边三角形、菱形、圆周角、圆心角的知识;从而完成求解.
    23.D
    【分析】由圆周角定理可求∠ACB=90°,由弧的关系得出角的关系,进而可求∠ABC=30°,∠CAB=60°,由直角三角形的性质可求∠CAH=∠ACE=30°,即可求解.
    【详解】解:∵AB是直径,
    ∴∠ACB=90°,
    ∴∠ABC+∠CAB=90°,
    ∵,
    ∴∠CAB=2∠ABC,
    ∴∠ABC=30°,∠CAB=60°,
    ∵CD⊥AB,
    ∴∠AEC=90°,
    ∴∠ACE=30°,
    ∵点H是AG的中点,∠ACB=90°,
    ∴AH=CH=HG,
    ∴∠CAH=∠ACE=30°,
    ∵∠CAF=∠CBF,
    ∴∠CBF=30°,
    故选:D.
    【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB的度数是本题的关键.
    24.1
    【分析】连接,利用圆周角定理及垂径定理易得,则,结合已知条件,利用直角三角形中角对的直角边等于斜边的一半即可求得答案.
    【详解】解:如图,连接,

    ∵,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    故答案为:1.
    【点睛】本题考查圆与直角三角形性质的综合应用,结合已知条件求得是解题的关键.
    25.35
    【分析】由题意易得,,则有,然后问题可求解.
    【详解】解:∵是的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵平分,
    ∴;
    故答案为35.
    【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.
    26.26
    【分析】连接构成直角三角形,先根据垂径定理,由垂直得到点为的中点,由可求出的长,再设出圆的半径为,表示出,根据勾股定理建立关于的方程,求解方程可得的值,即为圆的直径.
    【详解】解:连接,

    ,且寸,
    寸,
    设圆的半径的长为,则,


    在直角三角形中,根据勾股定理得:
    ,化简得:,
    即,
    (寸).
    故答案为:26.
    【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.
    27.4
    【分析】圆周角定理求出对应的圆心角的度数,利用圆心角的度数即可得解.
    【详解】解:∵,
    ∴对应的圆心角的度数为,
    ∵,
    ∴最少需要在圆形边缘上共安装这样的监视器台;
    故答案为:4
    【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.
    28.##80度
    【分析】根据圆内接四边形的性质:对角互补,即可解答.
    【详解】解:∵四边形内接于,
    ∴,
    ∵,
    ∴.
    故答案为:.
    【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.
    29.4
    【分析】根据圆周角定理得出,再由勾股定理确定,半径为,利用垂径定理确定,且,再由勾股定理求解即可.
    【详解】解:∵是的直径,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵点D,M分别是弦,弧的中点,
    ∴,且,
    ∴,
    ∴,
    故答案为:4.
    【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.
    30.40°##40度
    【分析】首先利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,然后利用直径所对的圆周角是直角确定∠ACB=90°,然后利用直角三角形的两个锐角互余求得答案即可.
    【详解】解:∵四边形ABCD内接与⊙O,∠ADC=130°,
    ∴∠B=180°-∠ADC=180°-130°=50°,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴∠CAB=90°-∠B=90°-50°=40°,
    故答案为:40°.
    【点睛】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.
    31.400π
    【详解】解:过点O作OD⊥AB于D,连接OB,如图,

    ∵AC=11,BC=21,
    ∴AB=AC+BC=32,
    ∵OD⊥AB于D,
    ∴AD=BD=AB=16,
    ∴CD=AD-AC=5,
    在Rt△OCD中,由勾股定理,得
    OD==12,
    在Rt△OBD中,由勾股定理,得
    OB==20,
    ∴这个花坛的面积=202π=400π,
    故答案为:400π.
    【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.
    32.
    【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.
    【详解】解:连接AC,
      
    ∵∠ABC=90°,且∠ABC是圆周角,
    ∴AC是圆形镜面的直径,
    由勾股定理得:,
    所以圆形镜面的半径为,
    故答案为:.
    【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.
    33.60.
    【详解】试题分析:根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得,根据题意可得:∠AOB=2∠C=2×30°=60°
    考点:圆周角定理
    34.30°##30度
    【分析】根据垂径定理得出∠AOB=∠BOD,进而求出∠AOD=60°,再根据圆周角定理可得∠APD=∠AOD=30°.
    【详解】∵OC⊥AB,OD为直径,
    ∴,
    ∴∠AOB=∠BOD,
    ∵∠AOB=120°,
    ∴∠AOD=60°,
    ∴∠APD=∠AOD=30°,
    故答案为:30°.
    【点睛】本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.
    35.26
    【分析】令圆O的半径为OB=r,则OC=r-2,根据勾股定理求出OC2+BC2=OB2,进而求出半径.
    【详解】解:如图,由题意,得OD垂直平分AB,
    ∴BC=10厘米,
    令圆O的半径为OB=r,则OC=r-2,
    在Rt△BOC中
    OC2+BC2=OB2,
    ∴(r-2)2+102=r2,
    解得r=26.
    故答案为:26.

    【点睛】本题考查垂径定理和勾股定理求线段长,熟练地掌握圆的基本性质是解决问题的关键.
    36.90°##90度
    【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.
    【详解】解:由题意可得:α:β=0.6,即α=0.6β,
    ∵α+β=360°,
    ∴0.6β+β=360°,
    解得:β=225°,
    ∴α=360°-225°=135°,
    ∴β-α=90°,
    故答案为:90°.
    【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.
    37.7.5
    【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.
    【详解】如下图所示,设球的半径为rcm,
    则OG=EG-r=EF-GF-r=EF-AB-r=32-20-r=(12-r)cm,
    ∵EG过圆心,且垂直于AD,
    ∴G为AD的中点,
    则AG=0.5AD=0.5×12=6cm,
    在中,由勾股定理可得,

    即,
    解方程得r=7.5,
    则球的半径为7.5cm.

    【点睛】本题考查了主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.
    38.D(,1)
    【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2,所以A(−2,0),B(0,2),然后利用线段的中点坐标公式得到D点坐标.
    【详解】解:∵四边形ABOC为圆的内接四边形,
    ∴∠ABO+∠ACO=180°,
    ∴∠ABO=180°−120°=60°,
    ∵∠AOB=90°,
    ∴AB为⊙D的直径,
    ∴D点为AB的中点,
    在Rt△ABO中,∵∠ABO=60°,
    ∴OB=AB=2,
    ∴OA=OB=2,
    ∴A(−2,0),B(0,2),
    ∴D点坐标为(−,1).
    故答案为(−,1).
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了坐标与图形性质.
    39.5cm
    【分析】连接BC,由题意易得,进而问题可求解.
    【详解】解:连接BC,如图所示:

    ∵,
    ∴,
    ∵是直径,
    ∴,
    ∵,
    ∴,
    ∴的半径为5cm;
    故答案为5cm.
    【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解题的关键.
    40. 见解析

    【分析】(Ⅰ)根据勾股定理计算即可;
    (Ⅱ)先将补成等腰三角形,然后构建全等三角形即可.
    【详解】解:(Ⅰ)∵每个小正方形的边长为1,
    ∴,
    故答案为:;
    (Ⅱ)如图,取与网格线的交点D,则点D为BC中点,连接并延长,与半圆相交于点E,连接并延长,与的延长线相交于点F,则OE为中位线,且,连接交于点G,连接并延长,与相交于点P,因为,则点P即为所求.

    【点睛】本题主要考查复杂作图能力,勾股定理,中位线定理,全等三角形的判定和性质,等腰三角形的性质,平行线的性质等知识点,掌握以上知识点并与已知图形结合是解决本题关键.
    41.
    【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.由∠DCB=∠AOB=90°,可得CD∥AO,从而可推出CD=2,最后根据勾股定理求得PC+PD的最小值.
    【详解】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.

    ∵CD⊥OB,
    ∴∠DCB=90°,
    ∵∠AOB=90°,
    ∴∠DCB=∠AOB,
    ∴CD∥AO,
    ∴,

    ∴CD=2,
    在Rt△CDE中,DE=,
    ∴PC+PD的最小值为.
    故答案为:2.
    【点睛】本题主要考查了轴对称——最短路径问题,平行线分线段成比例和垂径定理等知识,会利用轴对称性质解决最短问题是解题的关键.
    42.
    【分析】如图,连接 先证明再证明利用三角形的外角可得:再利用直角三角形中两锐角互余可得:再解方程可得答案.
    【详解】解:如图,连接
    是的中点,








    故答案为:
    【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.
    43.2.
    【分析】过O作OE⊥AB于C,根据垂径定理可得AC=BC=,可求OA=2,OD=,在Rt△AOD中,由勾股定理,可证△OAC∽△DAO,由相似三角形性质可求即可.
    【详解】解:过O作OE⊥AB于C,
    ∵AB为弦,
    ∴AC=BC=,
    ∵直线与相交于A,B两点,
    ∴当y=0时,,解得x=-2,
    ∴OA=2,
    ∴当x=0时,,
    ∴OD=,
    在Rt△AOD中,由勾股定理,
    ∵∠ACO=∠AOD=90°,∠CAO=∠OAD,
    ∴△OAC∽△DAO,
    即,
    ∴AB=2AC=2,
    故答案为2.

    【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.
    44.62
    【分析】连接,根据直径所对的圆周角是90°,可得,由,可得,进而可得.
    【详解】解:连接,

    ∵AB是的直径,
    ∴,



    故答案为:62
    【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.
    45.或
    【分析】分①点在线段上,②点在线段上两种情况,连接,先利用勾股定理求出的长,再在中,利用勾股定理求解即可得.
    【详解】解:由题意,分以下两种情况:
    ①如图,当点在线段上时,连接,

    的直径,






    ②如图,当点在线段上时,连接,

    同理可得:,


    综上,的长为或,
    故答案为:或.
    【点睛】本题考查了勾股定理、圆,正确分两种情况讨论是解题关键.
    46.4
    【分析】圆的两弦的中垂线的交点,就是圆心;连接AC,作AC的中垂线,与直线CD的交点就是圆心,已知圆心即可作出圆;连接圆心与A,根据勾股定理即可求得半径.
    【详解】如图,

    连接OA,
    ∵CD是弦AB的垂直平分线,
    ∴,
    设圆的半径是r.在直角△ADO中, .
    根据勾股定理得, ,

    故答案为:4
    【点睛】本题主要考查圆的确定和垂径定理,熟练掌握垂径定理得出关于半径的方程是解题的关键.
    47.
    【分析】如图,为的弦,,证明为等边三角形得到,则根据圆周角定理得到,作直径、,连接、,则,当点在上(不含、点)时,为锐角三角形,易得,当点为的中点时,点到的距离最大,即最大,延长交于,如图,根据垂径定理得到,所以,,则,然后写出的范围.
    【详解】解:如图,为的弦,,


    为等边三角形,


    作直径、,连接、,则,
    当点在上(不含、点)时,为锐角三角形,
    在中,,

    当点为的中点时,点到的距离最大,即最大,
    延长交于,如图,
    点为的中点,





    的范围为.
    故答案为.

    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.
    48.184
    【分析】过点O作的垂线段,交于点,根据直角三角形的边长关系求出的角度,阴影面积即为扇形的面积减去三角形的面积,随机可以求出容纳观众的数量.
    【详解】解:如图,过点O作的垂线段,交于点,
        
    圆心O到栏杆的距离是5米,
    米,

    ,米,



    可容纳的观众
    阴影部分面积(人),
    最多可容纳184名观众同时观看演出,
    故答案为:184.
    【点睛】本题考查了弓形的面积,根据特殊角三角函数值求角的度数,熟知扇形面积公式是解题的关键.
    49.(1)见解析,
    (2)

    【分析】(1)根据已知得出,则,即可证明平分,进而根据平分,得出,推出,得出是直径,进而可得;
    (2)根据(1)的结论结合已知条件得出,,是等边三角形,进而得出,由是直径,根据含度角的直角三角形的性质可得,在中,根据含度角的直角三角形的性质求得的长,进而即可求解.
    【详解】(1)解:∵
    ∴,
    ∴,即平分.
    ∵平分,
    ∴,
    ∴,
    ∴,即,
    ∴是直径,
    ∴;
    (2)解:∵,,
    ∴,则.
    ∵,
    ∴.
    ∵,
    ∴,
    ∴是等边三角形,则.
    ∵平分,
    ∴.
    ∵是直径,
    ∴,则.
    ∵四边形是圆内接四边形,
    ∴,则,
    ∴,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴.
    ∵是直径,
    ∴此圆半径的长为.
    【点睛】本题考查了弧与圆周角的关系,等弧所对的圆周角相等,直径所对的圆周角是直角,含度角的直角三角形的性质,等边三角形的性质与判定,圆内接四边形对角互补,熟练掌握以上知识是解题的关键.
    50.(1)证明见解析
    (2)8

    【分析】(1)证法一:连接,得到,因为,所以;证法二:连接,可得,则,根据,可得,即可得到结果;
    (2)连接,根据角度间的关系可以证得为直角三角形,根据勾股定理可得边的长,进而求得结果.
    【详解】(1)证法一:如图,连接,
    ∵,
    ∴,
    ∵是的直径,
    ∴,

    ∵,
    ∴,
    ∴,
      
    证法二:如图,连接,
    ∵四边形是的内接四边形,
    ∴,
    ∴,
    ∵是的直径,
    ∴,
    ∴,
    ∴,
    ∴,
      
    (2)解:如图,连接,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    ∵的半径为3,
    ∴,
    在中,,
    ∵,
    ∴,
    ∴,
    ∴,
      
    【点睛】本题考查了圆周角定理,直径所对的圆周角为直角,勾股定理,找到角度之间的关系是解题的关键.
    51.(1)见解析
    (2)

    【分析】(1)由圆周角定理得出,,再根据,即可得出结论;
    (2)过点作半径于点,根据垂径定理得出,证明,得出,在中根据勾股定理得出,在中,根据勾股定理得出,求出即可.
    【详解】(1)证明:∵,
    ∴,
    ∵,
    ∴,


    (2)解:过点作半径于点,则,

    ∴,



    在中,

    在中,,

    ,即的半径是.
      
    【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理.
    52.(1)
    (2)这座石拱桥主桥拱半径约为

    【分析】(1)根据垂径定理即可得出结论;
    (2)设主桥拱半径为,在中,根据勾股定理列出方程,即可得出答案.
    【详解】(1)解:∵半径,
    ∴.
    故答案为:.
    (2)设主桥拱半径为,由题意可知,,
    ∴,,
    在中,由勾股定理,得,
    即,
    解得,
    ∴,
    因此,这座石拱桥主桥拱半径约为.
    【点睛】此题考查垂径定理和勾股定理,是重要考点,根据题意利用勾股定理列出方程是解题关键.
    53.(1)△ABC是等腰直角三角形;证明见解析;
    (2);

    【分析】(1)根据圆周角定理可得∠ABC=90°,由∠ADB=∠CDB根据等弧对等角可得∠ACB=∠CAB,即可证明;
    (2)Rt△ABC中由勾股定理可得AC,Rt△ADC中由勾股定理求得CD即可;
    【详解】(1)证明:∵AC是圆的直径,则∠ABC=∠ADC=90°,
    ∵∠ADB=∠CDB,∠ADB=∠ACB,∠CDB=∠CAB,
    ∴∠ACB=∠CAB,
    ∴△ABC是等腰直角三角形;
    (2)解:∵△ABC是等腰直角三角形,
    ∴BC=AB=,
    ∴AC=,
    Rt△ADC中,∠ADC=90°,AD=1,则CD=,
    ∴CD=.
    【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.
    54.(1)4
    (2)6

    【分析】(1)设辅助线,利用直径、角平分线的性质得出的度数,利用圆周角与圆心角的关系得出的度数,根据半径与直径的关系,结合勾股定理即可得出结论.
    (2)由(1)已知,得出的度数,根据圆周角的性质结合得出,再根据直径、等腰直角三角形的性质得出的值,进而利用直角三角形面积公式求出,由阴影部分面积可知即为所求.
    【详解】(1)解:如图所示,连接,

    为的直径,平分,
    ,,.

    ,,
    ,即.


    (2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,

    由(1)已知,,,,


    弦弦,劣弧劣弧.

    为的直径,,
    ,.




    【点睛】本题考查圆的性质的理解与综合应用能力.涉及对半径与直径的关系,直径的性质,圆周角与圆心角的关系,圆周角的性质,勾股定理,直角三角形,角平分线等知识点.半径等于直径的一半;直径所对的圆周角是直角;在同圆或等圆中,相等的弦所对的圆周角等于圆心角的一半;在同圆或等圆中,圆周角相等弧相等弦相等.一个直角三角中,两个直角边边长的平方加起来等于斜边长的平方.恰当借助辅助线,灵活运用圆周角的性质建立等式关系是解本题的关键.
    55.(1)见解析
    (2)8

    【分析】(1)由角平分线的定义和圆周角定理可知,,,可得,即可证;
    (2)连接、、,交于点,由题意易知,进而可知,结合,可知垂直平分.易证是等腰直角三角形,,可得,可得.设,则,在和中,根据,可列方程,解出的值即可.
    【详解】(1)证明:由圆周角定理可得:,
    ∵ 平分,平分,
    ∴,.
    ∵,,
    ∴.
    ∴.
    (2)解:连接、、,交于点,

    由圆周角定理可得:,由(1)知,
    ∴.
    ∴.
    ∵.
    ∴垂直平分.
    ∵为直径,
    ∴,则是等腰直角三角形.
    ∵,
    ∴.
    ∵,
    ∴.
    设,则,
    在和中,,
    即:,
    解得,即,
    ∴.
    ∴.
    【点睛】此题是圆的综合题,主要考查了等腰直角三角形的性质,勾股定理等知识,证明是等腰直角三角形是解题关键.
    56.(1)
    (2),因为CD在∠CMD的内部,所以点在洞顶上巡视时总能看清洞口的情况

    【分析】(1)根据垂径定理可得,勾股定理解,即可求解;
    (2)在优弧上任取一点,连接根据圆周角定理可得,根据圆内接四边形对角互补即可求解.根据因为CD在∠CMD的内部,所以点在洞顶上巡视时总能看清洞口的情况.
    【详解】(1)解:,,

    设半径为,则
    在中,

    解得
    答:半径的长约为
    (2)如图,在优弧上任取一点,连接





    因为CD在∠CMD的内部,所以点在洞顶上巡视时总能看清洞口的情况.
    【点睛】本题考查了垂径定理,勾股定理,圆周角定理,圆内接四边形的性质,掌握以上知识是解题的关键.
    57.(1);(2)见解析.
    【分析】(1)根据M是CD的中点,OM与圆O直径共线可得,平分 CD,则有,利用勾股定理可求得半径的长;
    (2)连接AC,延长AF交BD于G,根据,,可得,,利用圆周角定理可得,可得,利用直角三角形的两锐角互余,可证得,即有.
    【详解】(1)解:连接OC,
    ∵M是CD的中点,OM与圆O直径共线
    ∴,平分CD,



    在中.



    ∴圆O的半径为
    (2)证明:连接AC,延长AF交BD于G.







    在中





    【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.
    58.(1)见解析
    (2)见解析

    【分析】(1)利用可证明;
    (2)利用得到,则可证明,于是可判断四边形为平行四边形,然后根据得到四边形是菱形.
    【详解】(1)证明:在和中,


    (2)证明:∵,




    ∴四边形为平行四边形,

    ∴四边形是菱形.

    【点睛】本题考查了圆的基本性质,全等三角形的判定与性质和菱形的判定与性质,熟练掌握相关知识点,并灵活运用,是解题的关键.
    59.(1)见解析;(2)见解析
    【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠CBD,根据平行线的判定可得结论;
    (2)证明△DEF≌△BCF,得到DE=BC,证明四边形BCDE为平行四边形,再根据得到BC=CD,从而证明菱形.
    【详解】解:(1)连接BD,
    ∵,
    ∴∠ADB=∠CBD,
    ∴AD∥BC;

    (2)连接CD,
    ∵AD∥BC,
    ∴∠EDF=∠CBF,
    ∵,
    ∴BC=CD,
    ∴BF=DF,又∠DFE=∠BFC,
    ∴△DEF≌△BCF(ASA),
    ∴DE=BC,
    ∴四边形BCDE是平行四边形,又BC=CD,
    ∴四边形BCDE是菱形.
    【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF.
    60.(1)证明见解析;(2)证明见解析
    【分析】(1)利用等腰三角形的性质证明,利用平行线证明,利用圆的性质证明,再证明即可得到结论;
    (2)如图,连接,利用平行线的性质及圆的基本性质,再利用圆内接四边形的性质证明,从而可得结论.
    【详解】证明:(1),



    又,


    四边形是平行四边形.
    (2)如图,连接


    四边形是的内接四边形







    【点睛】本题考查平行四边形的判定,圆的基本性质,平行线的性质与判定,等腰三角形的性质,圆内接四边形的性质,掌握以上知识是解题的关键.

    相关试卷

    专题23 圆的有关性质(共46题)--2023年中考数学真题分项汇编:

    这是一份专题23 圆的有关性质(共46题)--2023年中考数学真题分项汇编,文件包含圆的有关性质共46题解析版pdf、圆的有关性质共46题学生版pdf等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】:

    这是一份专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项汇编【全国通用】,文件包含专题27圆的有关性质优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用原卷版docx、专题27圆的有关性质优选真题60道-学易金卷三年2021-2023中考数学真题分项汇编全国通用解析版docx等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。

    专题31图形的旋转:三年(2021-2023)中考数学真题分项汇编:

    这是一份专题31图形的旋转:三年(2021-2023)中考数学真题分项汇编,共140页。试卷主要包含了如图,在中,,,等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map