|试卷下载
搜索
    上传资料 赚现金
    2023年浙江省嘉兴(舟山)市中考数学真题
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      浙江省嘉兴(舟山)市中考数学真题(原卷版).docx
    • 解析
      浙江省嘉兴(舟山)市中考数学真题(解析版).docx
    2023年浙江省嘉兴(舟山)市中考数学真题01
    2023年浙江省嘉兴(舟山)市中考数学真题02
    2023年浙江省嘉兴(舟山)市中考数学真题03
    2023年浙江省嘉兴(舟山)市中考数学真题01
    2023年浙江省嘉兴(舟山)市中考数学真题02
    2023年浙江省嘉兴(舟山)市中考数学真题03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年浙江省嘉兴(舟山)市中考数学真题

    展开
    这是一份2023年浙江省嘉兴(舟山)市中考数学真题,文件包含浙江省嘉兴舟山市中考数学真题原卷版docx、浙江省嘉兴舟山市中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    数学

    I(选择题)

    一、选择题(本题有10小题,每小题3分,共30分,请选出各题中唯一的正确选项,不选、多选,错选,均不得分)

    1. ﹣8的立方根是(  )

    A. ±2 B. 2 C. ﹣2 D. 不存在

    【答案】C

    【解析】

    【分析】根据立方根的定义进行解答.

    【详解】(﹣2)3=﹣8,

    ﹣8的立方根是﹣2,

    故选C.

    【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义.

    2. 如图的几何体由3个同样大小的正方体搭成,它的俯视图是(  )

     

    A.    B.    C.    D.  

    【答案】C

    【解析】

    【分析】找到从上面所看到的图形即可.

    【详解】解:从上面看从下往上数,左边有1个正方形,右边有1个正方形,

    俯视图是:

     

    故选:C

    【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图.

    3. 在下面的调查中,最适合用全面调查的是(  )

    A. 了解一批节能灯管的使用寿命 B. 了解某校803班学生的视力情况

    C. 了解某省初中生每周上网时长情况 D. 了解京杭大运河中鱼的种类

    【答案】B

    【解析】

    【分析】根据全面调查与抽样调查的特点对四个选项进行判断.

    【详解】A、了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意;

    B、了解某校803班学生的视力情况,适合采用普查,符合题意;

    C、了解某省初中生每周上网时长情况,适合采用抽样调查,不合题意;

    D、了解京杭大运河中鱼的种类,适合采用抽样调查,不合题意.

    故选:B

    【点睛】本题考查了全面调查与抽样调查:如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.

    4. 美术老师写的下列四个字中,为轴对称图形的是(  )

    A.    B.    C.    D.  

    【答案】D

    【解析】

    【分析】根据轴对称图形的定义进行判断即可.

    【详解】ABC选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠后,直线两旁的部分能够互相重合,所以不是轴对称图形;

    D选项图形能找到这样的一条直线,使图形沿一条直线折叠后,直线两旁的部分能够互相重合,所以是轴对称图形;

    故选:D

    【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

    5. 如图,在直角坐标系中,的三个顶点分别为,现以原点O为位似中心,在第一象限内作与的位似比为2的位似图形,则顶点的坐标是(  )

     

    A.  B.  C.  D.

    【答案】C

    【解析】

    【分析】直接根据位似图形的性质即可得.

    【详解】解:的位似比为2的位似图形是,且

    ,即

    故选:C

    【点睛】本题考查了坐标与位似图形,熟练掌握位似图形性质是解题关键.

    6. 下面四个数中,比1小的正无理数是(  )

    A.  B.  C.  D.

    【答案】A

    【解析】

    【分析】根据正数负数,即可进行解答.

    【详解】解:

    1小的正无理数是

    故选:A

    【点睛】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数负数.

    7 如图,已知矩形纸片,其中,现将纸片进行如下操作:

    第一步,如图①将纸片对折,使重合,折痕为,展开后如图②;

    第二步,再将图②中的纸片沿对角线折叠,展开后如图③;

    第三步,将图③中的纸片沿过点的直线折叠,使点落在对角线上的点处,如图④.则的长为(  )

     

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】根据折叠的性质得出,等面积法求得,根据,即可求解.

    【详解】解:如图所示,连接

     

    折叠,

    在以为圆心,为直径的圆上,

    ∵矩形,其中

    故选:D

    【点睛】本题考查了矩形与折叠问题,直径所对的圆周角是直角,勾股定理,正切的定义,熟练掌握以上知识是解题的关键.

    8. 已知点均在反比例函数的图象上,则的大小关系是(  )

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】根据反比例函数的图象与性质解答即可.

    【详解】解:

    图象在一三象限,且在每个象限内yx的增大而减小,

    故选:B

    【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,)的图象是双曲线,当,反比例函数图象的两个分支在第一、三象限,在每一象限内,yx的增大而减小;当 ,反比例函数图象的两个分支在第二、四象限,在每一象限内,yx的增大而增大.

    9. 如图,点的重心,点是边的中点,于点于点,若四边形的面积为6,则的面积为(  )

     

    A. 12 B. 14 C. 18 D. 24

    【答案】C

    【解析】

    【分析】连接,由点的重心,点是边的中点,可得点在一条直线上,且,通过可得,从而得到,通过,可得,再根据四边形的面积为6,可得出,进而可得出的面积.

    【详解】解:如图所示,连接

     

    的重心,点是边的中点,

    在一条直线上,且

     

    故选:C

    【点睛】本题主要考查了三角形的重心的性质,相似三角形的判定与性质,根据三角形的中线求面积,熟练掌握三角形的重心的性质,相似三角形的判定与性质,添加适当的辅助线,是解题的关键.

    10. 下图是底部放有一个实心铁球的长方体水槽轴截面示意图,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度(y)与注水时间(x)关系的是(  )  

      

    A.    B.     C.     D.  

    【答案】D

    【解析】

    【分析】根据蓄水池的横断面示意图,可知水的深度增长的速度由慢到快,然后再由快到慢,最后不变,进而求解即可.

    【详解】解:由蓄水池的横断面示意图可得,

    水的深度增长的速度由慢到快,然后再由快到慢,最后不变,

    故选:D

    【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.

    卷Ⅱ(非选择题)

    二、填空题(本题有6小题,每小题4分,共24分)

    11. ___________

    【答案】2023

    【解析】

    【分析】负数的绝对值是它的相反数,由此可解.

    【详解】解:的相反数是2023,故

    故答案为:2023

    【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.

    12. 一个多项式,把它因式分解后有一个因式为,请你写出一个符合条件的多项式:___________

    【答案】(答案不唯一)

    【解析】

    【分析】根据平方差公式或完全平方公式等知识解答即可.

    【详解】解:,因式分解后有一个因式为

    ∴这个多项式可以是(答案不唯一);

    故答案为:(答案不唯一).

    【点睛】本题考查了多项式的因式分解,熟练掌握分解因式的方法是解此题的关键.

    13. 现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________

     

    【答案】

    【解析】

    【分析】根据概率公式即可求解.

    【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是

    故答案为:

    【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.

    14. 如图,点外一点,分别与相切于点,点上,已知,则的度数是___________

     

    【答案】##

    【解析】

    【分析】连接,根据切线的性质得出,根据四边形内角和得出,根据圆周角定理即可求解.

    【详解】解:如图

     

    分别与相切于点

    故答案为:

    【点睛】本题考查了切线的性质,圆周角定理,求得是解题的关键.

    15. 我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花钱买了只鸡.若公鸡有8只,设母鸡有只,小鸡有只,可列方程组为___________

    【答案】

    【解析】

    【分析】根据“现花钱买了只鸡”,列出方程组即可.

    【详解】解:依题意得:

    故答案为:

    【点睛】本题主要考查了二元一次方程组应用.明确题意,准确列出方程组是解题的关键.

    16. 一副三角板中,.将它们叠合在一起,边重合,相交于点G(如图1),此时线段的长是___________,现将绕点按顺时针方向旋转(如图2),边相交于点H,连结,在旋转的过程中,线段扫过的面积是___________

     

    【答案】    ①.     ②.

    【解析】

    【分析】如图1,过点GH,根据含直角三角形的性质和等腰直角三角形的性质得出,然后由可求出的长,进而可得线段的长;如图2,将绕点C顺时针旋转得到交于,连接旋转的过程中任意位置,作N,过点B的延长线于M,首先证明是等边三角形,点在直线上,然后可得线段扫过的面积是弓形的面积加上的面积,求出,然后根据线段扫过的面积列式计算即可.

    【详解】解:如图1,过点GH

     

    如图2,将绕点C顺时针旋转得到交于,连接

    由旋转的性质得:

    是等边三角形,

    ,即垂直平分

    是等腰直角三角形,

    ∴点在直线上,

    连接旋转的过程中任意位置,

    则线段扫过的面积是弓形的面积加上的面积,

    N,则

    过点B的延长线于M,则

    ∴线段扫过的面积

    故答案为:

      【点睛】本题主要考查了旋转的性质,含直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点在直线上是本题的突破点,灵活运用各知识点是解题的关键.

    三、解答题(本题有8小题,第17~19题每题6分,第2021题每题8分,第2223题每题10分,第2412分,共66分)

    17. 1)解不等式:

    2)已知,求的值.

    【答案】1;(25

    【解析】

    【分析】1)不等式移项合并,把x系数化为1求解即可;

    2)先将展开化简,然后将整体代入求解即可.

    【详解】1)解:移项,得

    解得,

    2)解:

    ∴原式

    【点睛】此题考查了解一元一次不等式,整式的混合运算以及代数求值,解题的关键是熟练掌握以上运算法则.

    18. 小丁和小迪分别解方程过程如下:

    小丁:

    解:去分母,得

    去括号,得

    合并同类项,得

    解得

    原方程的解是

    小迪:

    解:去分母,得

    去括号得

    合并同类项得

    解得

    经检验,是方程的增根,原方程无解

    你认为小丁和小迪的解法是否正确?若正确,请在框内打“”;若错误,请在框内打“×”,并写出你的解答过程.

    【答案】都错误,见解析

    【解析】

    【分析】根据解分式方程的步骤判断小丁和小迪的解法是否正确,再正确解方程即可.

    【详解】小丁和小迪的解法都错误;

    解:去分母,得

    去括号,得

    解得,

    经检验:是方程的解

    【点睛】本题考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.

    19. 如图,在菱形中,于点于点,连接

     

    1求证:

    2,求的度数.

    【答案】1证明见解析   

    2

    【解析】

    【分析】1)根据菱形的性质的三角形全等即可证明

    2)根据菱形的性质和已知条件可推出度数,再根据第一问的三角形全等和直角三角形的性质可求出度数,从而求出度数,证明了等边三角形,即可求出的度数.

    【小问1详解】

    证明:菱形

    中,

    【小问2详解】

    解:菱形

     

    由(1)知

    等边三角形.

    【点睛】本题考查了三角形全等、菱形的性质、等边三角形的性质,解题的关键在于熟练掌握全等的方法和菱形的性质.

    20. 观察下面的等式:

    1写出的结果.

    2按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数)

    3请运用有关知识,推理说明这个结论是正确的.

    【答案】1   

    2   

    3见解析

    【解析】

    【分析】1)根据题干的规律求解即可;

    2)根据题干的规律求解即可;

    3)将因式分解,展开化简求解即可.

    【小问1详解】

    【小问2详解】

    【小问3详解】

    【点睛】此题考查数字的变化规律,因式分解,整式乘法的混合运算,解题关键是通过观察,分析、归纳发现其中的变化规律.

    21. 小明的爸爸准备购买一辆新能源汽车.在爸爸的预算范围内,小明收集了ABC三款汽车在20229月至20233月期间的国内销售量和网友对车辆的外观造型、舒适程度、操控性能、售后服务等四项评分数据,统计如下:

       

    1数据分析:

    B款新能源汽车在20229月至20233月期间月销售量的中位数;

    若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按的比例统计,求A款新能原汽车四项评分数据的平均数.

    2合理建议:

    请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.

    【答案】1①3015辆,②68.3   

    2B款,理由见解析

    【解析】

    【分析】1根据中位数的概念求解即可;

    根据加权平均数的计算方法求解即可;

    2)根据加权平均数的意义求解即可.

    【小问1详解】

    由中位数的概念可得,

    B款新能源汽车在20229月至20233月期间月销售量的中位数为3015辆;

    分.

    A款新能原汽车四项评分数据的平均数为分;

    【小问2详解】

    给出的权重时,

    (分),
     

    (分),
     

    (分),
     

    结合20233月的销售量,
     

    可以选B款.

    【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.

    22. 1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头的仰角、俯角均为,摄像头高度,识别的最远水平距离

     

    1身高的小杜,头部高度为,他站在离摄像头水平距离的点C处,请问小杜最少需要下蹲多少厘米才能被识别.

    2身高的小若,头部高度为,踮起脚尖可以增高,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为(如图3),此时小若能被识别吗?请计算说明.(精确到,参考数据

    【答案】1   

    2能,见解析

    【解析】

    【分析】1)根据正切值求出长度,再利用三角形全等可求出,最后利用矩形的性质求出的长度,从而求出蹲下的高度.

    2)根据正切值求出长度,再利用三角形全等可求出,最后利用矩形的性质求出的长度,即可求出长度,与踮起脚尖后的高度进行比较,即可求出答案.

    【小问1详解】

    解:过点的垂线分别交仰角、俯角线于点,交水平线于点,如图所示,

     

    中,

    小杜下蹲的最小距离

    【小问2详解】

    解:能,理由如下:

    过点的垂线分别交仰角、俯角线于点,交水平线于点,如图所示,

     

    中,

    小若垫起脚尖后头顶的高度为

    小若头顶超出点N高度

    小若垫起脚尖后能被识别.

    【点睛】本题考查的是解直角三角形的实际应用,涉及到的知识点有锐角三角函数中的正切值、矩形的性质、三角形的全等,解题的关键在于是否能根据生活实际题结合数学相关知识.解题的重点在于熟练掌握相关概念、性质和全等方法.

    23. 在二次函数中,

    1若它的图象过点,则t的值为多少?

    2时,y的最小值为,求出t的值:

    3如果都在这个二次函数的图象上,且,求m的取值范围.

    【答案】1   

    2   

    3

    【解析】

    【分析】1)将坐标代入解析式,求解待定参数值;

    2)确定抛物线的对称轴,对待定参数分类讨论,分,当时,函数值最小,以及,当时,函数值最小,求得相应的t值即可 得;

    3)由关于对称轴对称得,且A在对称轴左侧,C在对称轴右侧;确定抛物线与y轴交点,此交点关于对称轴的对称点为,结合已知确定出;再分类讨论:AB都在对称轴左边时,AB分别在对称轴两侧时,分别列出不等式进行求解即可.

    【小问1详解】

    代入中,

    解得,

    【小问2详解】

    抛物线对称轴为

    ,当时,函数值最小,

    解得

    ,当时,函数值最小,

    解得(不合题意,舍去)

    综上所述

    【小问3详解】

    关于对称轴对称

    ,且A在对称轴左侧,C在对称轴右侧

    抛物线与y轴交点为,抛物线对称轴为直线

    此交点关于对称轴的对称点为

    ,解得

    AB都在对称轴左边时,

    解得

    AB分别在对称轴两侧时

    到对称轴的距离大于A到对称轴的距离

    解得

    综上所述

    【点睛】本题考查二次函数图象的性质、极值问题;存在待定参数的情况下,对可能情况作出分类讨论是解题的关键.

    24. 已知,是半径为1的弦,的另一条弦满足,且于点H(其中点H在圆内,且).

     

    1在图1中用尺规作出弦与点H(不写作法,保留作图痕迹).

    2连结,猜想,当弦的长度发生变化时,线段的长度是否变化?若发生变化,说明理由:若不变,求出的长度;

    3如图2,延长至点F,使得,连结的平分线的延长线于点P,点M的中点,连结,若.求证:

    【答案】1作图见解析   

    2线段是定长,长度不发生变化,值为   

    3证明见解析

    【解析】

    【分析】1)以为圆心,大于长为半径画弧,交点为,连接,与交点为,与交点为,则,分别以为圆心,大于长为半径画弧,交点为,连接,则,以为圆心,长为半径画弧与交点为,则,以为圆心,长为半径画弧,交直线,以为圆心,大于长为半径画弧,交点为,连接,则交点为,与交点为,即、点即为所求;

    2)如图2,连结,连接并延长交,连结,过,证明四边形是正方形,则可证是等腰直角三角形,则,由,可知,由的直径,可得,则是等腰直角三角形,

    3)如图3,延长,交点为,由题意知的中位线,则,由,可得,证明,则,即,如图3,作的外接圆,延长交外接圆于点,连结,由的平分线,可得,则,证明,则,即,由,可得,进而结论得证.

    【小问1详解】

    解:如图1、点即为所求;

      【小问2详解】

    当弦的长度发生变化时,线段的长度不变;

    如图2,连结,连接并延长交,连结,过,则四边形是矩形,

     

    ∴四边形是正方形,

    ,即

    是等腰直角三角形,

    的直径,

    是等腰直角三角形,

    ∴线段是定长,长度不发生变化,值为

    【小问3详解】

    证明:如图3,延长,交点为

           

    ∴点H的中点,

    又∵点M的中点,

    的中位线,

    又∵

    又∵

    ,即

    如图3,作的外接圆,延长交外接圆于点,连结

    的平分线,

    【点睛】本题考查了作垂线,同弧或等弧所对的圆周角相等,正弦,正方形的判定与性质,等腰三角形的判定与性质,中位线,直径所对的圆周角为直角,全等三角形的判定与性质,相似三角形的判定与性质,角平分线等知识.解题的关键在于对知识的熟练掌握与灵活运用.

    相关试卷

    2023年浙江省嘉兴(舟山)市中考数学真题 试卷: 这是一份2023年浙江省嘉兴(舟山)市中考数学真题 试卷,共7页。

    2023年浙江省嘉兴(舟山)市中考数学真题: 这是一份2023年浙江省嘉兴(舟山)市中考数学真题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省嘉兴(舟山)市中考数学真题: 这是一份2023年浙江省嘉兴(舟山)市中考数学真题,共5页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map