河北省2023年中考数学试卷(附答案)
展开河北省2023年中考数学试卷
一、选择题
1. 代数式的意义可以是( )
A.与x的和 B.与x的差 C.与x的积 D.与x的商
2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西的方向,则淇淇家位于西柏坡的( )
A.南偏西方向 B.南偏东方向
C.北偏西方向 D.北偏东方向
3. 化简的结果是( )
A. B. C. D.
4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )
A. B. C. D.
5. 四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为( )
A.2 B.3 C.4 D.5
6. 若k为任意整数,则的值总能( )
A.被2整除 B.被3整除 C.被5整除 D.被7整除
7. 若,则( )
A.2 B.4 C. D.
8. 综合实践课上,嘉嘉画出,利用尺规作图找一点C,使得四边形为平行四边形.图1~图3是其作图过程.
(1)作的垂直平分线交于点O; | (2)连接,在的延长线上截取; | (3)连接,,则四边形即为所求. |
在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是( )
A.两组对边分别平行 B.两组对边分别相等
C.对角线互相平分 D.一组对边平行且相等
9. 如图,点是八等分点.若,四边形的周长分别为a,b,则下列正确的是( )
A. B.
C. D.a,b大小无法比较
10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是( )
A. B.
C.是一个12位数 D.是一个13位数
11. 如图,在中,,点M是斜边的中点,以为边作正方形,若,则( )
A. B. C.12 D.16
12. 如图1,一个2×2平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )
A.1个 B.2个 C.3个 D.4个
13. 在和中,.已知,则( )
A. B.
C.或 D.或
14. 如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为和.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是( )
A. B.
C. D.
15. 如图,直线,菱形和等边在,之间,点A,F分别在,上,点B,D,E,G在同一直线上:若,,则( )
A. B. C. D.
16. 已知二次函数和(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )
A.2 B. C.4 D.
二、填空题
17. 如图,已知点,反比例函数图像的一支与线段有交点,写出一个符合条件的k的数值: .
18. 根据下表中的数据,写出a的值为 .b的值为 .
x 结果 代数式 | 2 | n |
7 | b | |
a | 1 |
19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中
(1) 度.
(2)中间正六边形的中心到直线l的距离为 (结果保留根号).
三、解答题
20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:
投中位置 | A区 | B区 | 脱靶 |
一次计分(分) | 3 | 1 |
在第一局中,珍珍投中A区4次,B区2次,脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为.
(1)请用含a的式子分别表示;当时,求的值;
(2)比较与的大小,并说明理由.
22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.
(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;
(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?
23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.
如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.
(1)写出的最高点坐标,并求a,c的值;
(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.
24. 装有水的水槽放置在水平台面上,其横截面是以为直径的半圆,,如图1和图2所示,为水面截线,为台面截线,.
计算:在图1中,已知,作于点.
(1)求的长.
(2)操作后水面高度下降了多少?
(3)连接OQ并延长交GH于点F,求线段与的长度,并比较大小.
25. 在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.
例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.
(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;
(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.
①用含m的式子分别表示;
②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;
(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.
26.如图1和图2,平面上,四边形中,,点在边上,且.将线段绕点顺时针旋转到的平分线所在直线交折线于点,设点在该折线上运动的路径长为,连接.
(1)若点在上,求证:;
(2)如图2.连接.
①求的度数,并直接写出当时,的值;
②若点到的距离为,求的值;
(3)当时,请直接写出点到直线的距离.(用含的式子表示)
1.C
2.D
3.A
4.B
5.B
6.B
7.A
8.C
9.A
10.D
11.B
12.B
13.C
14.D
15.C
16.A
17.4(答案不唯一,满足均可)
18.;
19.(1)
(2)
20.(1)解:由题意得(分),
答:珍珍第一局的得分为6分;
(2)解:由题意得,
解得:.
21.(1)解:依题意得,三种矩形卡片的面积分别为:,
∴,,
∴,
∴当时,;
(2)解:,理由如下:
∵,
∴
∵,
∴,
∴.
22.(1)解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;
∴客户所评分数的中位数为:(分)
由统计图可知,客户所评分数的平均数为:(分)
∴客户所评分数的平均数或中位数都不低于3.5分,
∴该部门不需要整改.
(2)解:设监督人员抽取的问卷所评分数为x分,则有:
解得:
∵调意度从低到高为1分,2分,3分,4分,5分,共5档,
∴监督人员抽取的问卷所评分数为5分,
∵,
∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,
即加入这个数据之后,中位数是4分.
∴与(1)相比,中位数发生了变化,由分变成4分.
23.(1)解:∵抛物线,
∴的最高点坐标为,
∵点在抛物线上,
∴,解得:,
∴抛物线的解析式为,令,则;
(2)解:∵到点A水平距离不超过的范围内可以接到沙包,
∴点A的坐标范围为,
当经过时,,
解得;
当经过时,,
解得;
∴
∴符合条件的n的整数值为4和5.
24.(1)解:连接,
∵为圆心,于点,,
∴,
∵,
∴,
∴在中,
.
操作:将图1中的水面沿向右作无滑动的滚动,使水流出一部分,当时停止滚动,如图2.其中,半圆的中点为,与半圆的切点为,连接交于点.
探究:在图2中
(2)解:∵与半圆的切点为,
∴
∵
∴于点,
∵,,
∴,
∴操作后水面高度下降高度为:
.
(3)解:∵于点,
∴,
∵半圆的中点为,
∴,
∴,
∴,
∴,
,
∵,
∴.
25.(1)解:设的解析式为,把、代入,得
,解得:,
∴的解析式为;
将向上平移9个单位长度得到的直线的解析式为;
(2)解:①∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,
∴点P按照乙方式移动了次,
∴点P按照甲方式移动m次后得到的点的坐标为;
∴点按照乙方式移动次后得到的点的横坐标为,纵坐标为,
∴;
②由于,
∴直线的解析式为;
函数图象如图所示:
(3)解:
26.(1)证明:∵将线段绕点顺时针旋转到,
∴
∵的平分线所在直线交折线于点,
∴
又∵
∴
∴;
(2)解:①∵,,
∴
∵,
∴,
∴
∴;
如图所示,当时,
∵平分
∴
∴
∴
∴
∵,
∴
∴,
∴
∵,
∴
∴,即
∴解得
∴.
②如图所示,当点在上时,,
∵,
∴,,
∴,
∴
∴;
如图所示,当在上时,则,过点作交的延长线于点,延长交的延长线于点,
∵,
∴,
∴
∴
即
∴,,
∴
∵
∴,
∴,
∴
∴
解得:
∴,
综上所述,的值为或;
(3)解:点到直线的距离为
2023年宁夏中考数学试卷【附答案】: 这是一份2023年宁夏中考数学试卷【附答案】,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河北省中考数学试卷(含答案解析): 这是一份2023年河北省中考数学试卷(含答案解析),共23页。试卷主要包含了 代数式−7x的意义可以是, 化简x32的结果是等内容,欢迎下载使用。
2017年河北省中考数学试卷及答案 (2): 这是一份2017年河北省中考数学试卷及答案 (2),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。