黑龙江省齐齐哈尔市实验学校2022-2023学年数学七年级第二学期期末经典试题含答案
展开黑龙江省齐齐哈尔市实验学校2022-2023学年数学七年级第二学期期末经典试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.函数的自变量x的取值范围是( )
A. B. C. D.
2.如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是( )
A.1 B.2 C.3 D.4
3.下列实数中,无理数是( )
A. B. C. D.
4.已知直线y=-x+4与y=x+2如图所示,则方程组的解为( )
A. B. C. D.
5.如果分式有意义,那么的取值范围是( )
A. B. C. D.
6.一次信息技术模拟测试后,数学兴趣小组的同学随机统计了九年级20名学生的成绩记录如下:有5人得10分,6人得9分,5人得8分,4人得7分这20名学生成绩的中位数和众数分别是
A.10分,9分 B.9分,10分 C.9分,9分 D.分,9分
7.下列各式不能用公式法分解因式的是( )
A. B.
C. D.
8.以下列各组线段为边,能构成直角三角形的是( )
A.1cm,2cm,3cm B. cm, cm,5cm C.6cm,8cm,10cm D.5cm,12cm,18cm
9.如图,中,增加下列选项中的一个条件,不一定能判定它是矩形的是( )
A. B. C. D.
10.一种药品原价每盒 元,经过两次降价后每盒元,两次降价的百分率相同,设每次降价的百分率为,则符合题意的方程为( )
A. B. C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
12.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,在下列结论中:①方差是8;②极差是9;③众数是-1;④平均数是-1,其中正确的序号是________.
13.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
14.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).
15.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是_______.
16.若,则的取值范围为_____.
三、解下列各题(本大题共8小题,共72分)
17.(8分)解不等式(组),并将其解集分别表示在数轴上
(1)10﹣4(x﹣3)≤2(x﹣1);
(2).
18.(8分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端到地面距离为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离为2米,求小巷的宽度.
19.(8分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.
(1)画出△A1B1C1和△A2B2C2.
(2)直接写出点B1、B2坐标.
(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.
20.(8分)阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
21.(8分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
22.(10分)解不等式组:,并把解集在数轴上表示出来。
23.(10分)(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.
24.(12分)(1)计算:(1+2)(﹣)﹣(﹣)2
(2)因式分解:2mx2﹣8mxy+8my2
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、B
5、D
6、C
7、C
8、C
9、B
10、D
二、填空题(本大题共有6小题,每小题3分,共18分)
11、1.
12、②③④
13、40°
14、乙
15、
16、
三、解下列各题(本大题共8小题,共72分)
17、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.
18、小巷的宽度CD为2.2米.
19、(1)见解析;(2)B1(2,4)、B2(0,﹣1);(3)P1(b,﹣a),P2(b﹣2,﹣a﹣5).
20、 (1)线段的中点坐标是;(2)点的坐标为;(3)符合条件的点坐标为或.
21、 (1)见解析;(2)1.
22、,解集在数轴上表示见解析
23、(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.
24、(1)﹣+1;(1)1m(x﹣1y)1.
2023-2024学年黑龙江省齐齐哈尔市实验学校数学九上期末统考模拟试题含答案: 这是一份2023-2024学年黑龙江省齐齐哈尔市实验学校数学九上期末统考模拟试题含答案,共8页。
2023-2024学年黑龙江省齐齐哈尔市昂溪区数学八上期末经典模拟试题含答案: 这是一份2023-2024学年黑龙江省齐齐哈尔市昂溪区数学八上期末经典模拟试题含答案,共8页。试卷主要包含了命题“邻补角的和为”的条件是,下列图形中,是轴对称图形的是,下列分式中,最简分式是,下列各组数中,是方程的解的是等内容,欢迎下载使用。
湖南常德芷兰实验学校2022-2023学年数学七年级第二学期期末经典试题含答案: 这是一份湖南常德芷兰实验学校2022-2023学年数学七年级第二学期期末经典试题含答案,共7页。试卷主要包含了如图,一次函数,数据用小数表示为,下列各式中,正确的是等内容,欢迎下载使用。