


2022-2023学年吉林省长春市高新区七下数学期末质量跟踪监视模拟试题含答案
展开2022-2023学年吉林省长春市高新区七下数学期末质量跟踪监视模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是( )
A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC
2.根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是( )
天数 | 3 | 1 | 1 | 1 | 1 |
PM2.5 | 18 | 20 | 21 | 29 | 30 |
A.21微克立方米 B.20微克
立方米
C.19微克立方米 D.18微克
立方米
3.一同学将方程化成了
的形式,则m、n的值应为( )
A.m=1.n=7 B.m=﹣1,n=7 C.m=﹣1,n=1 D.m=1,n=﹣7
4.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )
A.x>﹣2 B.x<﹣2 C.x>4 D.x<4
5.二次根式中
的取值范围是( )
A. B.
C.
D.
6.如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为( )
A.4 B.3 C.2 D.1
7.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是( )
A.四边形ABCD与四边形AEFG是相似图形
B.AD与AE的比是2:3
C.四边形ABCD与四边形AEFG的周长比是2:3
D.四边形ABCD与四边形AEFG的面积比是4:9
8.使下列式子有意义的实数x的取值都满足的式子的是( )
A. B.
C.
D.
9.一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
10.如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是( ).
A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元
C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元
11.下面式子从左边到右边的变形属于因式分解的是( ).
A.x2-x-2=x(x一1)-2 B.
C.(x+1)(x—1)=x2 - 1 D.
12.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )
A.40 B.42 C.38 D.2
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.
14.一次函数的图象如图所示,当
时,
的取值范围为__________.
15.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
16.已知:如图,、
分别是
的中线和角平分线,
,
,则
的长等于__.
17.已知实数满足
,则以
的值为两边长的等腰三角形的周长是_________________.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)某单位计划在暑假阴间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七折优惠;乙旅行社表示可先免去一位游客的费用,其余游客七五折优惠.设该单位参加旅游的人数是x人.选择甲旅行社时,所需费用为元,选择乙旅行社时,所需费用为
元.
(1)写出甲旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(2)写出乙旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(3)该单位选择哪一家旅行社支付的旅游费用较少?
19.(5分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?
20.(8分)解不等式组:,并把解集在数轴上表示出来.
21.(10分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.
(1)求证:AE=DF.
(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
(3)如图3,连接CG.若CG=BC,则AF:FB的值为 .
22.(10分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
23.(12分)梯形中,
,
,
,
,
、
在
上,
平分
,
平分
,
、
分别为
、
的中点,
和
分别与
交于
和
,
和
交于点
.
(1)求证:;
(2)当点在四边形
内部时,设
,
,求
关于
的函数关系式,并写出自变量
的取值范围;
(3)当时,求
的长.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、B
2、B
3、B
4、A
5、D
6、B
7、B
8、D
9、A
10、C
11、B
12、B
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、62°
14、
15、或
或1
16、
17、19
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1);(2)
;(3)当人数为15人时,两家均可选择,当人数在
之间时选择乙旅行社,当人数
时,选择甲旅行社,见解析.
19、(1)该商店3月份这种商品的售价是40元;(2)该商店4月份销售这种商品的利润是990元.
20、
21、 (1) 见解析;(2) DG=DP,理由见解析;(3) 1∶1.
22、(1);(1)OF= 1;(3)见解析.
23、(1)证明见解析;(2);(3)3或
.
辽宁省大连高新区七校联考2022-2023学年数学七下期末质量跟踪监视试题含答案: 这是一份辽宁省大连高新区七校联考2022-2023学年数学七下期末质量跟踪监视试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,分式可变形为等内容,欢迎下载使用。
河南周口港区2022-2023学年数学七下期末质量跟踪监视模拟试题含答案: 这是一份河南周口港区2022-2023学年数学七下期末质量跟踪监视模拟试题含答案,共6页。
吉林省吉林市名校2022-2023学年数学七下期末质量跟踪监视模拟试题含答案: 这是一份吉林省吉林市名校2022-2023学年数学七下期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了抛物线y=,下列说法中错误的是等内容,欢迎下载使用。