|试卷下载
搜索
    上传资料 赚现金
    人教版八年级数学上册同步精品讲义第14章 整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      人教版八年级数学上册同步精品讲义第14章 整式的乘法与因式分解单元检测(教师版).doc
    • 练习
      人教版八年级数学上册同步精品讲义第14章 整式的乘法与因式分解单元检测(原卷版).doc
    人教版八年级数学上册同步精品讲义第14章  整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)01
    人教版八年级数学上册同步精品讲义第14章  整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)02
    人教版八年级数学上册同步精品讲义第14章  整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)03
    人教版八年级数学上册同步精品讲义第14章  整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)01
    人教版八年级数学上册同步精品讲义第14章  整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)02
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.4 整式的乘法精品课时作业

    展开
    这是一份人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.4 整式的乘法精品课时作业,文件包含人教版八年级数学上册同步精品讲义第14章整式的乘法与因式分解单元检测教师版doc、人教版八年级数学上册同步精品讲义第14章整式的乘法与因式分解单元检测原卷版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    第31课 整式的乘法与因式分解单元检测
    一、选择题
    1.下列运算正确的是(  )
    A.2a3÷a=6 B.(ab2)2=ab4 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b2
    【考点】平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法.
    【分析】根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.
    【解答】解:A、2a3÷a=2a2,故选项错误;
    B、(ab2)2=a2b4,故选项错误;
    C、正确;
    D、(a+b)2=a2+2ab+b2,故选项错误.
    故选C.
    【点评】本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟练掌握并灵活运用.
     
    2.下列计算正确的是(  )
    A.a3+a2=a5 B.(3a﹣b)2=9a2﹣b2 C.a6b÷a2=a3b D.(﹣ab3)2=a2b6
    【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;整式的除法.
    【分析】分别根据合并同类项法则以及完全平方公式和整式的除法以及积的乘方分别计算得出即可.
    【解答】解:A、a3+a2=a5无法运用合并同类项计算,故此选项错误;
    B、(3a﹣b)2=9a2﹣6ab+b2,故此选项错误;
    C、a6b÷a2=a4b,故此选项错误;
    D、(﹣ab3)2=a2b6,故此选项正确.
    故选:D.
    【点评】此题主要考查了完全平方公式以及积的乘方和整式的除法等知识,熟练掌握运算法则是解题关键.
     
    3.下列运算正确的是(  )
    A.a2﹣a4=a8 B.(x﹣2)(x﹣3)=x2﹣6 C.(x﹣2)2=x2﹣4 D.2a+3a=5a
    【考点】完全平方公式;合并同类项;多项式乘多项式.
    【分析】根据合并同类项的法则,多项式乘多项式的法则,完全平方公式对各选项分析判断后利用排除法求解.
    【解答】解:A、a2与a4不是同类项,不能合并,故本选项错误;
    B、(x﹣2)(x﹣3)=x2﹣5x+6,故本选项错误;
    C、(x﹣2)2=x2﹣4x+4,故本选项错误;
    D、2a+3a=5a,故本选项正确.
    故选D.
    【点评】本题考查了合并同类项,多项式乘多项式,完全平方公式,属于基础题,熟练掌握运算法则与公式是解题的关键.
     
    4.下列各式计算正确的是(  )
    A.(a﹣b)2=a2﹣b2 B.(﹣a4)3=a7 C.2a•(﹣3b)=6ab D.a5÷a4=a(a≠0)
    【考点】完全平方公式;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.
    【分析】根据完全平方公式、积的乘方、单项式乘单项式的计算法则和同底数幂的除法法则计算即可求解.
    【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故选项错误;
    B、(﹣a4)3=﹣a12,故选项错误;
    C、2a•(﹣3b)=﹣6ab,故选项错误;
    D、a5÷a4=a(a≠0),故选项正确.
    故选:D.
    【点评】考查了完全平方公式、积的乘方、单项式乘单项式和同底数幂的除法,熟练掌握计算法则是解题的关键.
     
    5.下列计算正确的是(  )
    A.m3+m2=m5 B.m3•m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.
    【考点】平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.
    【分析】根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.
    【解答】解:A、不是同类项,不能合并,故选项错误;
    B、m3•m2=m5,故选项错误;
    C、(1﹣m)(1+m)=1﹣m2,选项错误;
    D、正确.
    故选D.
    【点评】本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.
     
    6.下列运算正确的是(  )
    A.x6+x2=x3 B.
    C.(x+2y)2=x2+2xy+4y2 D.
    【考点】完全平方公式;立方根;合并同类项;二次根式的加减法.
    【分析】A、本选项不能合并,错误;
    B、利用立方根的定义化简得到结果,即可做出判断;
    C、利用完全平方公式展开得到结果,即可做出判断;
    D、利用二次根式的化简公式化简,合并得到结果,即可做出判断.
    【解答】解:A、本选项不能合并,错误;
    B、=﹣2,本选项错误;
    C、(x+2y)2=x2+4xy+4y2,本选项错误;
    D、﹣=3﹣2=,本选项正确.
    故选D
    【点评】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.
     
    7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(  )

    A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
    【考点】完全平方公式的几何背景.
    【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.
    【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,
    则面积是(a﹣b)2.
    故选:C.
    【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.
     
    8.若a+b=3,a﹣b=7,则ab=(  )
    A.﹣10 B.﹣40 C.10 D.40
    【考点】完全平方公式.
    【专题】计算题.
    【分析】联立已知两方程求出a与b的值,即可求出ab的值.
    【解答】解:联立得:,
    解得:a=5,b=﹣2,
    则ab=﹣10.
    故选A.
    【点评】此题考查了解二元一次方程组,求出a与b的值是解本题的关键.
     
    9.下列各式的变形中,正确的是(  )
    A.(﹣x﹣y)(﹣x+y)=x2﹣y2 B.﹣x=
    C.x2﹣4x+3=(x﹣2)2+1 D.x÷(x2+x)=+1
    【考点】平方差公式;整式的除法;因式分解-十字相乘法等;分式的加减法.
    【分析】根据平方差公式和分式的加减以及整式的除法计算即可.
    【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;
    B、,错误;
    C、x2﹣4x+3=(x﹣2)2﹣1,错误;
    D、x÷(x2+x)=,错误;
    故选A.
    【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.
     
    10.下列运算正确的是(  )
    A.a2•a3=a6 B.(﹣a+b)(a+b)=b2﹣a2
    C.(a3)4=a7 D.a3+a5=a8
    【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
    【分析】A:根据同底数幂的乘法法则判断即可.
    B:平方差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可.
    C:根据幂的乘方的计算方法判断即可.
    D:根据合并同类项的方法判断即可.
    【解答】解:∵a2•a3=a5,
    ∴选项A不正确;
    ∵(﹣a+b)(a+b)=b2﹣a2,
    ∴选项B正确;
    ∵(a3)4=a12,
    ∴选项C不正确;
    ∵a3+a5≠a8
    ∴选项D不正确.
    故选:B.
    【点评】(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.
    (2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.
    (3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数).
    (4)此题还考查了合并同类项的方法,要熟练掌握.
     
    11.下列运算正确的是(  )
    A.a2•a3=a6 B.(a2)3=a5
    C.2a2+3a2=5a6 D.(a+2b)(a﹣2b)=a2﹣4b2
    【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
    【分析】根据同底数幂的乘法,可判断A,根据幂的乘方,可判断B,根据合并同类项,可判断C,根据平方差公式,可判断D.
    【解答】解:A、底数不变指数相加,故A错误;
    B、底数不变指数相乘,故B错误;
    C、系数相加字母部分不变,故C错误;
    D、两数和乘以这两个数的差等于这两个数的平方差,故D正确;
    故选:D.
    【点评】本题考查了平方差,利用了平方差公式,同底数幂的乘法,幂的乘方.
     
    12.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是(  )
    A.1﹣xn+1 B.1+xn+1 C.1﹣xn D.1+xn
    【考点】平方差公式;多项式乘多项式.
    【专题】规律型.
    【分析】已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.
    【解答】解:(1﹣x)(1+x)=1﹣x2,
    (1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,
    …,
    依此类推(1﹣x)(1+x+x2+…+xn)=1﹣xn+1,
    故选:A
    【点评】此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键.
     
    13.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为(  )
    A.a+b B.2a+b C.3a+b D.a+2b
    【考点】完全平方公式的几何背景.
    【专题】压轴题.
    【分析】根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.
    【解答】解;3张边长为a的正方形纸片的面积是3a2,
    4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,
    5张边长为b的正方形纸片的面积是5b2,
    ∵a2+4ab+4b2=(a+2b)2,
    ∴拼成的正方形的边长最长可以为(a+2b),
    故选:D.
    【点评】此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.
     
    二、填空题
    14.当m+n=3时,式子m2+2mn+n2的值为  .
    【答案】9
    【考点】完全平方公式.
    【分析】将代数式化为完全平方公式的形式,代入即可得出答案.
    【解答】解:m2+2mn+n2=(m+n)2=9.
    故答案为:9.
    【点评】本题考查了完全平方公式的知识,解答本题的关键是掌握完全平方公式的形式.
     
    15.定义为二阶行列式.规定它的运算法则为=ad﹣bc.那么当x=1时,二阶行列式的值为  .
    【答案】0
    【考点】完全平方公式.
    【专题】新定义.
    【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.
    【解答】解:根据题意得:当x=1时,原式=(x﹣1)2=0.
    故答案为:0
    【点评】此题考查了完全平方公式,弄清题中的新定义是解本题的关键.
     
    16.填空:x2+10x+  =(x+  )2.
    【答案】25,5
    【考点】完全平方式.
    【分析】完全平方公式:(a±b)2=a2±2ab+b2,从公式上可知.
    【解答】解:∵10x=2×5x,
    ∴x2+10x+52=(x+5)2.
    故答案是:25;5.
    【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求熟悉完全平方公式,并利用其特点解题.
     
    17.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是  .
    【答案】15
    【考点】平方差公式.
    【专题】计算题.
    【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.
    【解答】解:∵a+b=3,a﹣b=5,
    ∴原式=(a+b)(a﹣b)=15,
    故答案为:15
    【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
     
    18.已知m+n=3,m﹣n=2,则m2﹣n2= 6 .
    【答案】6
    【考点】平方差公式.
    【分析】根据平方差公式,即可解答.
    【解答】解:m2﹣n2
    =(m+n)(m﹣n)
    =3×2
    =6.
    故答案为:6.
    【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.
     
    19.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为 ﹣3 .
    【答案】-3
    【考点】平方差公式.
    【专题】计算题.
    【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.
    【解答】解:∵a+b=3,a﹣b=﹣1,
    ∴原式=(a+b)(a﹣b)=﹣3,
    故答案为:﹣3.
    【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
     
    20.若a2﹣b2=,a﹣b=,则a+b的值为  .
    【答案】
    【考点】平方差公式.
    【专题】计算题.
    【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
    【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,
    ∴a+b=.
    故答案为:.
    【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
     
    21.已知a+b=4,a﹣b=3,则a2﹣b2=  .
    【答案】12
    【考点】平方差公式.
    【专题】计算题.
    【分析】根据a2﹣b2=(a+b)(a﹣b),然后代入求解.
    【解答】解:a2﹣b2=(a+b)(a﹣b)=4×3=12.
    故答案是:12.
    【点评】本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.
     
    22.化简:(x+1)(x﹣1)+1=  .
    【答案】 x2
    【考点】平方差公式.
    【分析】运用平方差公式求解即可.
    【解答】解:(x+1)(x﹣1)+1
    =x2﹣1+1
    =x2.
    故答案为:x2.
    【点评】本题主要考查了平方差公式,熟记公式是解题的关键.
     
    23.若m=2n+1,则m2﹣4mn+4n2的值是  .
    【答案】1
    【考点】完全平方公式.
    【专题】计算题.
    【分析】所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.
    【解答】解:∵m=2n+1,即m﹣2n=1,
    ∴原式=(m﹣2n)2=1.
    故答案为:1
    【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.
     
    24.已知a、b满足a+b=3,ab=2,则a2+b2=  .
    【答案】5
    【考点】完全平方公式.
    【专题】计算题.
    【分析】将a+b=3两边平方,利用完全平方公式化简,将ab的值代入计算,即可求出所求式子的值.
    【解答】解:将a+b=3两边平方得:(a+b)2=a2+2ab+b2=9,
    把ab=2代入得:a2+4+b2=9,
    则a2+b2=5.
    故答案为:5.
    【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
     
    25.若a+b=5,ab=6,则a﹣b=  .
    【答案】±1
    【考点】完全平方公式.
    【分析】首先根据完全平方公式将(a﹣b)2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.
    【解答】解:(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=1,
    则a﹣b=±1.
    故答案是:±1.
    【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.
     
    26.若,则=  .
    【答案】6
    【考点】完全平方公式;非负数的性质:偶次方;非负数的性质:算术平方根.
    【专题】计算题;压轴题;整体思想.
    【分析】根据非负数的性质先求出a2+、b的值,再代入计算即可.
    【解答】解:∵,
    ∴+(b+1)2=0,
    ∴a2﹣3a+1=0,b+1=0,
    ∴a+=3,
    ∴(a+)2=32,
    ∴a2+=7;
    b=﹣1.
    ∴=7﹣1=6.
    故答案为:6.
    【点评】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+的值.
    三、解答题
    27.计算:
    (1)﹣(﹣2)2+(﹣0.1)0;
    (2)(x+1)2﹣(x+2)(x﹣2).
    【考点】完全平方公式;实数的运算;平方差公式;零指数幂.
    【分析】(1)原式第一项利用平方根的定义化简,第二项表示两个﹣2的乘积,最后一项利用零指数幂法则计算即可得到结果;
    (2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.
    【解答】解:(1)原式=3﹣4+1=0;
    (2)原式=x2+2x+1﹣x2+4=2x+5.
    【点评】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.
     
    28.(1)计算:sin60°﹣|1﹣|+﹣1
    (2)化简:(a+3)2﹣(a﹣3)2.
    【考点】完全平方公式;实数的运算;负整数指数幂;特殊角的三角函数值.
    【分析】(1)根据特殊角的三角函数值,绝对值,负整数指数幂分别求出每一部分的值,再代入求出即可;
    (2)先根据完全平方公式展开,再合并同类项即可.
    【解答】解:(1)原式=﹣(﹣1)+2
    =﹣+1+2
    =﹣+3;
    (2)原式=a2+6a+9﹣(a2﹣6a+9)
    =a2+6a+9﹣a2+6a﹣9
    =12a.
    【点评】本题考查了特殊角的三角函数值,绝对值,负整数指数幂,完全平方公式的应用,主要考查学生的计算能力.
     
    29.(1)填空:
    (a﹣b)(a+b)= a2﹣b2 ;
    (a﹣b)(a2+ab+b2)= a3﹣b3 ;
    (a﹣b)(a3+a2b+ab2+b3)= a4﹣b4 .
    (2)猜想:
    (a﹣b)(an﹣1+an﹣2b+…+abn﹣2+bn﹣1)= an﹣bn (其中n为正整数,且n≥2).
    (3)利用(2)猜想的结论计算:
    29﹣28+27﹣…+23﹣22+2.
    【考点】平方差公式.
    【专题】规律型.
    【分析】(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;
    (2)根据(1)的规律可得结果;
    (3)原式变形后,利用(2)得出的规律计算即可得到结果.
    【解答】解:(1)(a﹣b)(a+b)=a2﹣b2;
    (a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;
    (a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4;
    故答案为:a2﹣b2,a3﹣b3,a4﹣b4;
    (2)由(1)的规律可得:
    原式=an﹣bn,
    故答案为:an﹣bn;
    (3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.
    法二:29﹣28+27﹣…+23﹣22+2
    =29﹣28+27﹣…+23﹣22+2﹣1+1
    ==342
    【点评】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.
     
    30.化简:(a+b)(a﹣b)+2b2.
    【考点】平方差公式;合并同类项.
    【专题】计算题.
    【分析】先根据平方差公式算乘法,再合并同类项即可.
    【解答】解:原式=a2﹣b2+2b2
    =a2+b2.
    【点评】本题考查了平方差公式和整式的混合运算的应用,主要考查学生的化简能力.


    相关试卷

    初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形优秀课后测评: 这是一份初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形优秀课后测评,文件包含人教版数学八年级下册同步精品讲义第13课正方形原卷版doc、人教版数学八年级下册同步精品讲义第13课正方形教师版doc等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。

    人教版八年级下册18.2.2 菱形优秀当堂达标检测题: 这是一份人教版八年级下册18.2.2 菱形优秀当堂达标检测题,文件包含人教版数学八年级下册同步精品讲义第12课菱形原卷版doc、人教版数学八年级下册同步精品讲义第12课菱形教师版doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    初中数学人教版九年级上册24.1.2 垂直于弦的直径同步训练题: 这是一份初中数学人教版九年级上册24.1.2 垂直于弦的直径同步训练题,文件包含人教版九年级数学上册同步精品讲义第20课垂径定理教师版doc、人教版九年级数学上册同步精品讲义第20课垂径定理原卷版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学上册同步精品讲义第14章 整式的乘法与因式分解单元检测(2份打包,原卷版+教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map