(新高考)高考数学一轮复习素养练习 第3章 第6讲 高效演练分层突破 (含解析)
展开[基础题组练]
1.函数y=的定义域是( )
A.[1,2] B.[1,2)
C. D.
解析:选C.由即
解得x≥.故选C.
2.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )
A.log2x B.
C.logx D.2x-2
解析:选A.由题意知f(x)=logax(a>0且a≠1),因为f(2)=1,所以loga2=1,所以a=2.所以f(x)=log2x.故选A.
3.设函数f(x)=loga|x|在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是( )
A.f(a+1)>f(2) B.f(a+1)<f(2)
C.f(a+1)=f(2) D.不能确定
解析:选A.由已知得0<a<1,所以1<a+1<2,又易知函数f(x)为偶函数,故可以判断f(x)在(0,+∞)上单调递减,所以f(a+1)>f(2).
4.(多选)在同一直角坐标系中,f(x)=kx+b与g(x)=logbx的图象如图,则下列关系不正确的是( )
A.k<0,0<b<1
B.k>0,b>1
C.fg(1)>0(x>0)
D.x>1时,f(x)-g(x)>0
解析:选ABC.由直线方程可知,k>0,0<b<1,故A,B不正确;而g(1)=0,故C不正确;而当x>1时,g(x)<0,f(x)>0,所以f(x)-g(x)>0.所以D正确.
5.(多选)已知函数f(x)=ln(x-2)+ln(6-x),则( )
A.f(x)在(2,6)上单调递增
B.f(x)在(2,6)上的最大值为2ln 2
C.f(x)在(2,6)上单调递减
D.y=f(x)的图象关于直线x=4对称
解析:选BD.f(x)=ln(x-2)+ln(6-x)=ln[(x-2)(6-x)],定义域为(2,6).令t=(x-2)(6-x),则y=ln t.因为二次函数t=(x-2)(6-x)的图象的对称轴为直线x=4,又f(x)的定义域为(2,6),所以f(x)的图象关于直线x=4对称,且在(2,4)上单调递增,在(4,6)上单调递减,当x=4时,t有最大值,所以f(x)max=ln(4-2)+ln(6-4)=2ln 2,故选BD.
6.已知函数f(x)=x3+alog3x,若f(2)=6,则f=________.
解析:由f(2)=8+alog32=6,解得a=-,所以f=+alog3=-alog32=+×log32=.
答案:
7.(2020·贵州教学质量测评改编)已知函数y=loga(x+3)-(a>0,a≠1)的图象恒过定点A,则点A的坐标为________;若点A也在函数f(x)=3x+b的图象上,则f(log32)=________.
解析:令x+3=1可得x=-2,此时y=loga1-=-,可知定点A的坐标为.点A也在函数f(x)=3x+b的图象上,故-=3-2+b,解得b=-1.所以f(x)=3x-1,则f(log32)=3log32-1=2-1=1.
答案: 1
8.(教材习题改编)若loga<1(a>0,且a≠1),则实数a的取值范围是________.
解析:当0<a<1时,loga<logaa=1,所以0<a<;当a>1时,loga<logaa=1,所以a>1.所以实数a的取值范围是∪(1,+∞).
答案:∪(1,+∞)
9.已知函数f(x-3)=loga(a>0,a≠1).
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性,并说明理由.
解:(1)令x-3=u,则x=u+3,于是f(u)=loga(a>0,a≠1,-3<u<3),
所以f(x)=loga(a>0,a≠1,-3<x<3).
(2)因为f(-x)+f(x)=loga+loga=loga1=0,
所以f(-x)=-f(x),又定义域(-3,3)关于原点对称.
所以f(x)是奇函数.
10.设f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),且f(1)=2.
(1)求实数a的值及f(x)的定义域;
(2)求f(x)在区间上的最大值.
解:(1)因为f(1)=2,所以loga4=2(a>0,a≠1),所以a=2.
由得-1<x<3,
所以函数f(x)的定义域为(-1,3).
(2)f(x)=log2(1+x)+log2(3-x)=log2[(1+x)(3-x)]=log2[-(x-1)2+4],
所以当x∈(-1,1]时,f(x)是增函数;当x∈(1,3)时,f(x)是减函数,
故函数f(x)在上的最大值是f(1)=log24=2.
[综合题组练]
1.若函数y=loga(x2-ax+1)有最小值,则a的取值范围是( )
A.0<a<1 B.0<a<2,a≠1
C.1<a<2 D.a≥2
解析:选C.当a>1时,y有最小值,则说明x2-ax+1有最小值,故x2-ax+1=0中Δ<0,即a2-4<0,所以2>a>1.
当0<a<1时,y有最小值,
则说明x2-ax+1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.
2.(2020·河南新乡二模)已知函数f(x)=log3(9x+1)+mx是偶函数,则不等式f(x)+4x<log32的解集为( )
A.(0,+∞) B.(1,+∞)
C.(-∞,0) D.(-∞,1)
解析:选C.由f(x)=log3(9x+1)+mx是偶函数,得f(-x)=f(x),即log3(9-x+1)+m(-x)=log3(9x+1)+mx,变形可得m=-1,
即f(x)=log3(9x+1)-x,设g(x)=f(x)+4x=log3(9x+1)+3x,易得g(x)在R上为增函数,且g(0)=log3(90+1)=log32,则f(x)+4x<log32⇒g(x)<g(0),则有x<0,即不等式的解集为(-∞,0).故选C.
3.已知函数f(x)=loga(ax-3)在[1,3]上单调递增,则a的取值范围是________.
解析:由于a>0,且a≠1,
所以u=ax-3为增函数,
所以若函数f(x)为增函数,则f(x)=logau必为增函数,
所以a>1.
又u=ax-3在[1,3]上恒为正,
所以a-3>0,即a>3.
答案:(3,+∞)
4.设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc的取值范围是________.
解析:由题意知,在(0,10)上,函数y=|lg x|的图象和直线y=c有两个不同交点,所以|lg a|=|lg b|,又因为y=lg x在(0,+∞)上单调递增,且a<b<10,所以lg a=-lg b,所以lg a+lg b=0,所以ab=1,0<c<lg 10=1,所以abc的取值范围是(0,1).
答案:(0,1)
5.已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)=logx.
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.
解:(1)当x<0时,-x>0,则f(-x)=log(-x).
因为函数f(x)是偶函数,
所以f(-x)=f(x)=log(-x),
所以函数f(x)的解析式为f(x)=
(2)因为f(4)=log4=-2,f(x)是偶函数,
所以不等式f(x2-1)>-2转化为f(|x2-1|)>f(4).
又因为函数f(x)在(0,+∞)上是减函数,
所以|x2-1|<4,解得-<x<,
即不等式的解集为(-,).
6.已知函数f(x)=lg.
(1)计算:f(2 020)+f(-2 020);
(2)对于x∈[2,6],f(x)<lg恒成立,求实数m的取值范围.
解:(1)由>0,得x>1或x<-1.
所以函数f(x)的定义域为{x|x>1或x<-1}.
又f(x)+f(-x)=lg=0.
所以f(2 020)+f(-2 020)=0.
(2)当x∈[2,6]时,f(x)<lg恒成立可化为<恒成立.
即m>(x-1)(7-x)在[2,6]上恒成立.
又当x∈[2,6]时,(x-1)(7-x)=-x2+8x-7=-(x-4)2+9.
所以当x=4时,[(x-1)(7-x)]max=9,所以m>9.
即实数m的取值范围是(9,+∞).
(新高考)高考数学一轮复习素养练习 第9章 第6讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第9章 第6讲 高效演练分层突破 (含解析),共8页。
(新高考)高考数学一轮复习素养练习 第6章 第4讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第6章 第4讲 高效演练分层突破 (含解析),共7页。试卷主要包含了已知a∈R,i是虚数单位等内容,欢迎下载使用。
(新高考)高考数学一轮复习素养练习 第6章 第3讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第6章 第3讲 高效演练分层突破 (含解析),共7页。