2023年山西省中考数学真题(含答案)
展开2023年山西省中考数学真题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.计算的结果为( ).
A.3 B. C. D.
2.全民阅读有助于提升一个国家、一个民族的精神力量.图书馆是开展全民阅读的重要场所.以下是我省四个地市的图书馆标志,其文字上方的图案是轴对称图形的是( )
A. B. C. D.
3.下列计算正确的是( )
A. B. C. D.
4.山西是全国电力外送基地,2022年山西省全年外送电量达到1464亿千瓦时,同比增长.数据1464亿千瓦时用科学记数法表示为( )
A.千瓦时 B.千瓦时
C.千瓦时 D.千瓦时
5.如图,四边形内接于为对角线,经过圆心.若,则的度数为( )
A. B. C. D.
6.一种弹簧秤最大能称不超过的物体,不挂物体时弹簧的长为,每挂重物体,弹簧伸长.在弹性限度内,挂重后弹簧的长度与所挂物体的质量之间的函数关系式为( )
A. B. C. D.
7.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为( )
A. B. C. D.
8.已知都在反比例函数的图象上,则a、b、c的关系是( )
A. B. C. D.
9.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为,曲线终点为,过点的两条切线相交于点,列车在从到行驶的过程中转角为.若圆曲线的半径,则这段圆曲线的长为( ).
A. B. C. D.
10.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点均为正六边形的顶点.若点的坐标分别为,则点的坐标为( )
A. B. C. D.
二、填空题
11.计算(+)(﹣)的结果为__________.
12.如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有__________个白色圆片(用含n的代数式表示)
13.如图,在中,.以点为圆心,以的长为半径作弧交边于点,连接.分别以点为圆心,以大于的长为半径作弧,两弧交于点,作射线交于点,交边于点,则的值为__________.
14.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.
15.如图,在四边形中,,对角线相交于点.若,则的长为__________.
三、解答题
16.(1)计算:;
(2)计算:.
17.解方程:.
18.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.
小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图
选手 | 测试成绩/分 | 总评成绩/分 | ||
采访 | 写作 | 摄影 | ||
小悦 | 83 | 72 | 80 | 78 |
小涵 | 86 | 84 | ▲ | ▲ |
(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;
(2)请你计算小涵的总评成绩;
(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.
19.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.
(1)求1个A部件和1个B部件的质量各是多少;
(2)卡车一次最多可运输多少套这种设备通过此大桥?
20.2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑洛种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算和的长度(结果精确到.参考数据:,).
课题 | 母亲河驳岸的调研与计算 | ||
调查方式 | 资料查阅、水利部门走访、实地查看了解 | ||
| 功能 | 驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物 | |
| 驳岸剖面图 |
| 相关数据及说明,图中,点A,B,C,D,E在同一竖直平面内,与均与地面平行,岸墙于点A,,,,, |
| 计算结果 |
| |
交流展示 |
|
21.阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.
瓦里尼翁平行四边形 我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形.
我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.
①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形. ②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系. ③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下: 证明:如图2,连接,分别交于点,过点作于点,交于点. ∵分别为的中点,∴.(依据1)
∴.∵,∴. ∵四边形是瓦里尼翁平行四边形,∴,即. ∵,即, ∴四边形是平行四边形.(依据2)∴. ∵,∴.同理,… |
任务:
(1)填空:材料中的依据1是指:_____________.
依据2是指:_____________.
(2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)
(3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形的周长与对角线长度的关系,并证明你的结论.
22.问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由.
(1)数学思考:谈你解答老师提出的问题;
(2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.
①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;
②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果.
23.如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.
(1)求直线的函数表达式及点C的坐标;
(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.
①当时,求的值;
②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出S的最大值.
参考答案:
1.A
2.C
3.D
4.C
5.B
6.B
7.C
8.B
9.B
10.A
11.﹣1
12.
13.
14.
15./
16.(1)1;(2)
17.
18.(1)69,69,70
(2)82分
(3)小涵能入选,小悦不一定能入选,见解析
19.(1)一个部件的质量为1.2吨,一个部件的质量为0.8吨
(2)6套
20.的长约为的长约为.
21.(1)三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半);平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)
(2)答案不唯一,见解析
(3)平行四边形的周长等于对角线与长度的和,见解析
22.(1)正方形,见解析
(2)①,见解析;②
23.(1),点的坐标为
(2)①2或3或;②,S的最大值为
2023年山西省中考数学真题: 这是一份2023年山西省中考数学真题,文件包含精品解析山西省中考数学真题原卷版docx、精品解析山西省中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
2023年山西省中考数学真题: 这是一份2023年山西省中考数学真题,文件包含山西省中考数学真题原卷版docx、山西省中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
2023年山西省中考数学真题(含答案解析): 这是一份2023年山西省中考数学真题(含答案解析),文件包含2023年山西省中考数学真题解析版docx、2023年山西省中考数学真题原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。