精品解析:2023年四川省达州市中考数学真题
展开达州市2023年高中阶段学校招生统一考试暨初中学业水平考试
数学
本考试为闭卷考试,考试时间120分钟,满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.
温馨提示:
1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置.待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.
2.选择题必须使用2B铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内,超出答题区答案无效;在草稿纸、试题卷上作答无效.
3.保持答题卡整洁,不要折叠、弄破、弄皱,不得使用涂改液、修正带、刮纸刀.
4.考试结束后,将试卷及答题卡一并交回.
第Ⅰ卷(选择题 共40分)
一、单项选择题(每小题4分,共40分)
1. 倒数是( )
A. B. 2023 C. D.
2. 下列图形中,是长方体表面展开图的是( )
A. B. C. D.
3. 某市政府在2022年着力稳定宏观经济大盘,全市经济发展取得新成效,全年生产总值实现2502.7亿元.数据2502.7亿用科学记数法表示( )
A. B. C. D.
4. 一组数据2,3,5,2,4,则这组数据的众数和中位数分别为( )
A. 3和5 B. 2和5 C. 2和3 D. 3和2
5. 如图,,平分,则( )
A. B. C. D.
6. 下列计算正确的是( )
A. B. C. D.
7. 某镇的“脆红李”深受广大市民的喜爱,也是馈赠亲友的尚佳礼品,首批“脆红李”成熟后,当地某电商用12000元购进这种“脆红李”进行销售,面市后,线上订单猛增供不应求,该电商又用11000元购进第二批这种“脆红李”,由于更多“脆红李”成熟,单价比第一批每件便宜了5元,但数量比第一批多购进了40件,求购进的第一批“脆红李”的单价.设购进的第一批“脆红李”的单价为x元/件,根据题意可列方程为( )
A. B.
C. D.
8. 下列命题中,是真命题的是( )
A. 平行四边形是轴对称图形
B. 对角线互相垂直的四边形是菱形
C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
D. 在中,若,则是直角三角形
9. 如图,四边形是边长为的正方形,曲线是由多段的圆心角的圆心为,半径为;的圆心为,半径为的圆心依次为循环,则的长是( )
A. B. C. D.
10. 如图,拋物线(为常数)关于直线对称.下列五个结论:①;②;③;④;⑤.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
第Ⅱ卷(非选择题 共110分)
二、填空题(每小题4分,共20分)
11. 函数的自变量x的取值范围是________.
12. 已知是方程的两个实数根,且,则的值为___________.
13. 如图,乐器上的一根弦,两个端点固定在乐器板面上,支撑点是靠近点的黄金分割点,支撑点是靠近点的黄金分割点,之间的距离为______.
14. 如图,一次函数与反比例函数的图象相交于两点,以为边作等边三角形,若反比例函数的图象过点,则的值为_____________.
15. 在中,,,在边上有一点,且,连接,则的最小值为___________.
三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)
16. (1)计算:;
(2)先化简,再求值;,其中为满足的整数.
17. 在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.
(1)该班共有学生_________人,并把条形统计图补充完整;
(2)扇形统计图中,___________,___________,参加剪纸社团对应的扇形圆心角为_______度;
(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
18. 如图,网格中每个小正方形的边长均为1,的顶点均在小正方形的格点上.
(1)将向下平移3个单位长度得到,画出;
(2)将绕点顺时针旋转90度得到,画出;
(3)在(2)的运动过程中请计算出扫过的面积.
19. 莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为,当摆角恰为时,座板离地面的高度为,当摆动至最高位置时,摆角为,求座板距地面的最大高度为多少?(结果精确到;参考数据:,,,,,)
20. 如图,在中,.
(1)尺规作图:作的角平分线交于点(不写做法,保留作图痕迹);
(2)在(1)所作图形中,求的面积.
21. 如图,内接于是延长线上的一点,,相交于点.
(1)求证:是的切线;
(2)若,,求的长.
22. 某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.
(1)分别求出每件豆笋、豆干进价;
(2)某特产店计划用不超过元购进豆笋、豆干共件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?
(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?
23. 【背景】在一次物理实验中,小冉同学用一固定电压为的蓄电池,通过调节滑动变阻器来改变电流大小,完成控制灯泡(灯丝的阻值)亮度的实验(如图),已知串联电路中,电流与电阻之间关系为,通过实验得出如下数据:
… | 1 | 3 | 4 | 6 | … | ||
… | 4 | 3 | 24 | 2 | … |
(1)_______,_______;
(2)【探究】根据以上实验,构建出函数,结合表格信息,探究函数的图象与性质.
①在平面直角坐标系中画出对应函数的图象;
②随着自变量的不断增大,函数值的变化趋势是_________.
(3)【拓展】结合(2)中函数图象分析,当时,的解集为________.
24. 如图,抛物线过点.
(1)求抛物线的解析式;
(2)设点是直线上方抛物线上一点,求出的最大面积及此时点的坐标;
(3)若点是抛物线对称轴上一动点,点为坐标平面内一点,是否存在以为边,点为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
25. (1)如图①,在矩形边上取一点,将沿翻折,使点落在上处,若,求的值;
(2)如图②,在矩形的边上取一点,将四边形沿翻折,使点落在的延长线上处,若,求的值;
(3)如图③,在中,,垂足为点,过点作交于点,连接,且满足,直接写出的值.
精品解析:2022年四川省达州市中考数学真题(解析版): 这是一份精品解析:2022年四川省达州市中考数学真题(解析版),共32页。
2022年四川省达州市中考数学真题(解析版): 这是一份2022年四川省达州市中考数学真题(解析版),共32页。
2023年四川省达州市中考数学真题(含解析): 这是一份2023年四川省达州市中考数学真题(含解析),共34页。