|试卷下载
搜索
    上传资料 赚现金
    2023年河南省驻马店市高考数学三模试卷(理科)-普通用卷
    立即下载
    加入资料篮
    2023年河南省驻马店市高考数学三模试卷(理科)-普通用卷01
    2023年河南省驻马店市高考数学三模试卷(理科)-普通用卷02
    2023年河南省驻马店市高考数学三模试卷(理科)-普通用卷03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年河南省驻马店市高考数学三模试卷(理科)-普通用卷

    展开
    这是一份2023年河南省驻马店市高考数学三模试卷(理科)-普通用卷,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省驻马店市高考数学三模试卷(理科)

    一、单选题(本大题共12小题,共60.0分。在每小题列出的选项中,选出符合题目的一项)

    1.  已知复数满足,则(    )

    A.  B.  C.  D.

    2.  已知集合,则(    )

    A.  B.  C.  D.

    3.  已知,则(    )

    A. 充分不必要条件 B. 必要不充分条件
    C. 充要条件 D. 既不充分也不必要条件

    4.  已知直线与直线垂直,若直线的倾斜角为,则(    )

    A.  B.  C.  D.

    5.  水雾喷头布置的基本原则是:保护对象的水雾喷头数量应根据设计喷雾强度、保护面积和水雾喷头特性,按水雾喷头流量单位:计算公式为和保护对象的水雾喷头数量计算公式为计算确定,其中为水雾喷头的工作压力单位:为水雾喷头的流量系数其值由喷头制造商提供为保护对象的保护面积,为保护对象的设计喷雾强度单位:,水雾喷头的布置应使水雾直接喷射和完全覆盖保护对象,如不能满足要求时应增加水雾喷头的数量当水雾喷头的工作压力,水雾喷头的流量系数,保护对象的保护面积,保护对象的设计喷雾强度时,保护对象的水雾喷头的数量约为参考数据:(    )

    A.  B.  C.  D.

    6.  的展开式中,项的系数为(    )

    A.  B.  C.  D.

    7.  在数列中,,则的前项和的最大值为(    )

    A.  B.  C.  D.

    8.  已知抛物线,圆上一点,上一点,则的最小值为(    )

    A.  B.  C.  D.

    9.  三棱柱中,底面边长和侧棱长都相等,,则异面直线所成角的余弦值为(    )

    A.  B.  C.  D.

    10.  ,则(    )

    A.  B.  C.  D.

    11.  已知函数,将的图象向右平移个单位长度,得到的图象,则(    )

    A. 的一个周期
    B. 的值域为
    C. 的图象关于直线对称
    D. 曲线在点处的切线斜率为

    12.  已知分别为双曲线的左、右顶点,为该曲线上不同于的任意一点,设的面积为,则(    )

    A. 为定值 B. 为定值
    C. 为定值 D. 为定值

    二、填空题(本大题共4小题,共20.0分)

    13.  已知平面向量满足,且,则 ______

    14.  已知圆与圆,写出圆和圆的一条公切线的方程______

    15.  如图,在正四棱锥框架内放一个球,球与侧棱均相切,且,则球的表面积为______


     


    16.  内存在唯一的零点内存在唯一的零点,且,则实数的取值范围为______

    三、解答题(本大题共7小题,共80.0分。解答应写出文字说明,证明过程或演算步骤)

    17.  本小题
    中,内角的对边分别为,若

    已知为边上一点,,若,求的周长.

    18.  本小题
    无论是国际形势还是国内消费状况,年都是充满挑战的一年,为应对复杂的经济形势,各地均出台了促进经济发展的各项政策,积极应对当前的经济形势,取得了较好的效果某市零售行业为促进消费,开展了新一轮的让利促销的活动,活动之初,利用各种媒体进行大量的广告宣传,为了解传媒对本次促销活动的影响,在本市内随机抽取了个大型零售卖场,得到其宣传费用单位:万元和销售额单位:万元的数据如表:

    卖场

    宣传费用

    销售额

    关于的线性回归方程,并预测当宣传费用至少多少万元时结果取整数,销售额能突破万元;
    经济活动中,人们往往关注投入和产出比,在这次促销活动中,设销售额与投入的宣传费用的比为,若,称这次宣传策划是高效的;否则为非高效的从这家卖场中随机抽取家.
    若抽取的家中含有宣传策划高效的卖场,求抽取的家中恰有一家是宣传策划高效的概率;
    若抽取的家卖场中宣传策划高效的有家,求的分布列和数学期望.
    附:参考数据,回归直线方程的最小二乘法的估计公式分别为:

    19.  本小题
    在直三棱柱中,为棱上一点,为棱上一点.
    ,且靠近的三等分点,求证:平面平面
    为等边三角形,且三棱锥的体积为,求二面角的正弦值的大小.


    20.  本小题
    已知椭圆的离心率为,直线交于两点,当为双曲线的一条渐近线时,轴的距离为
    的方程;
    若过轴的垂线,垂足为的中点为为坐标原点,连接并延长交于点,直线的斜率为,求的最小值.

    21.  本小题
    已知函数
    有两个不同的零点,求的取值范围;
    若函数有两个不同的极值点,证明:

    22.  本小题
    在平面直角坐标系中,直线的参数方程为为参数,以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为
    的直角坐标方程以及轴交点的极坐标;
    若直线交于点,与轴交于点,求的值.

    23.  本小题
    已知关于的不等式对任意实数恒成立.
    求满足条件的实数的所有值;
    恒成立,求实数的取值范围.

    答案和解析

     

    1.【答案】 

    【解析】解:



    故选:
    先利用题意算出,然后利用复数模的公式即可求解.
    本题主要考查复数的四则运算,属于基础题.
     

    2.【答案】 

    【解析】解:

    所以
    故选:
    先求出集合,再根据交集的定义即可得解.
    本题主要考查交集及其运算,属于基础题.
     

    3.【答案】 

    【解析】解:因为
    ,即,则

    所以的充分不必要条件,
    故选:
    根据解出,再利用充分性和必要性即可判断.
    本题主要考查了充分条件和必要条件的定义,属于基础题.
     

    4.【答案】 

    【解析】解:因为直线与直线垂直,
    所以直线的斜率为,所以
    所以
    故选:
    由题意可得,由诱导公式和同角三角函数的平方关系化简,代入即可求出结果.
    本题主要考查了两直线垂直的斜率关系,考查了同角三角函数间的基本关系,属于基础题.
     

    5.【答案】 

    【解析】解:由水雾喷头的工作压力,水雾喷头的流量系数

    再由保护对象的保护面积,保护对象的设计喷雾强度

    即保护对象的水雾喷头的数量约为个.
    故选:
    根据已知公式和数据代入计算即可.
    本题主要考查了函数的实际应用,考查了学生的计算能力,属于基础题.
     

    6.【答案】 

    【解析】解:相当于在个因式中有个因式选,有种选法,
    余下的个因式中有个因式选,有种选法,
    最后余下个因式中选,把所选式子相乘即可得项,
    ,所以项的系数为
    故答案为:
    相当于在个因式中有个因式选,余下的个因式中有个因式选,最后余下个因式中选,把所选式子相乘即可得项,求解即可.
    本题考查二项式定理相关知识,属于中档题.
     

    7.【答案】 

    【解析】解:由,得
    ,所以,则
    所以数列是以为首项,为公比的等比数列,
    所以,即,即

    将以上个等式两边相加得
    所以
    经检验满足上式,故
    时,,即单调递增,
    时,,即单调递减,
    因为
    所以的前项和的最大值为
    故选:
    ,则由可得,所以数列是以为首项,为公比的等比数列,可得到,然后用累加法得到,通过的单调性即可求出的最大值.
    本题主要考查数列递推式,数列的求和,考查运算求解能力,属于中档题.
     

    8.【答案】 

    【解析】解:由题意得圆心,圆的半径为
    ,则
    时,
    又因为圆的半径为,则
    故选:
    ,利用两点距离公式结合点在抛物线上有,再利用二次函数的性质和圆的半径,即可得出答案.
    本题考查抛物线的性质,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.
     

    9.【答案】 

    【解析】解:如图,设,棱长均为









    异面直线所成角的余弦值为
    故选:
    先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线所成角的余弦值即可.
    本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,考查运算求解能力,是基础题.
     

    10.【答案】 

    【解析】解:设,则
    时,,即上单调递增,
    时,,即上单调递减,


    ,即
    ,即
    综上,
    故选:
    构造函数,由导数确定其单调性,由函数单调性比较的大小,从而可得结论.
    本题主要考查里用导数研究函数的单调性,考查对数值大小的比较,考查函数思想与逻辑推理能力,属于中档题.
     

    11.【答案】 

    【解析】解:对于,故不为的一个周期,故A错误;
    对于,令,且
    所以原函数变为,当时,,当时,
    ,所以,或,所以
    所以的值域为,故B正确;
    对于,将的图象向右平移个单位长度,得到的图象,

    ,故C错误;
    对于,所以,故D错误.
    故选:
    可判断;令,则,求出值域可判断;由三角函数的平移变化求出,由可判断;由导数的几何意义可判断
    本题主要考查函数的图象变换,三角函数的性质,考查运算求解能力,属于中档题.
     

    12.【答案】 

    【解析】解:由于双曲线的对称性,可设
    由双曲线可得



    因此,其中
    对于不是定值,故不正确;
    对于,由于,即
    为定值,则为定值,从而是确定的值,
    于是均为定值,这是不可能的,故B错误;
    对于选项
    因此是定值,不是定值.
    故选:
    利用三角换元得到,利用斜率公式可求的关系,化简后可得的关系,故可判断的正误,根据面积公式可求表示,故可判断的正误.
    本题主要考查双曲线的性质,考查运算求解能力,属于中档题.
     

    13.【答案】 

    【解析】解:因为
    所以,可得
    所以
    故答案为:
    利用数量积的运算律可得到,然后用即可求解.
    本题主要考查平面向量的数量积运算,属于基础题.
     

    14.【答案】 

    【解析】解:设圆的公切线为,解得
    代入求解得:
    所以切线为:,或
    故答案为:
    设切线方程为,根据圆心到直线的距离均为求解方程.
    本题主要考查了直线与圆的位置关系,属于中档题.
     

    15.【答案】 

    【解析】解:连接,由题意得

    ,所以
    设球的切点分别为
    连接,因为,所以
    所以
    即球的半径,所以球的表面积
    故答案为:
    连接,根据三角函数计算出球心到切点的距离即可得到半径,最后利用球的表面积公式即可.
    本题主要考查了正四棱锥的结构特征,考查了球的表面积公式,属于基础题.
     

    16.【答案】 

    【解析】解:由可得,则上单调递减,
    因为上有唯一零点,所以,所以

    ,即,则,且时,,当时,
    所以上单调递增,在上单调递减,
    因为上有唯一零点
    所以
    所以
    综上,实数的取值范围为
    故答案为:
    通过导数可得到上单调递减,结合题意内存在唯一的零点可得;通过导数可得上单调递增,在上单调递减,结合内存在唯一的零点,且,可得,即可求解.
    本题主要考查了利用导数研究函数的单调性和最值,考查了函数的零点问题,属于中档题.
     

    17.【答案】解:因为
    由正弦定理可得
    所以
    所以
    所以
    因为
    所以
    舍去舍去
    ,所以
    由题意得

    因为
    所以
    所以,即
    由余弦定理得
    所以
    所以舍去
    所以的周长为 

    【解析】利用正弦定理进行边角转化,可得到,结合的范围可得到,再利用即可求解;
    利用可得到,然后用余弦定理可求出,即可求出周长.
    本题主要考查了正弦定理,和差角公式,三角形面积公式的应用,属于中档题.
     

    18.【答案】解:
    所以

    所以
    ,解得万元
    故当宣传费用至少为万元时,销售额能突破万元;
    记事件为抽取的家中含有宣传策划高效的卖场,事件为抽取的家卖场中恰有家为宣传策划高效,
    由已知数据,卖场的宣传策划是高效的,卖场的宣传策划是非高效的,
    因为
    所以
    故抽取的家中恰有一家是宣传策划高效的概率为
    由题意知的取值为

    的分布列为:

    所以 

    【解析】计算出相关数据,代入公式即可得到线性回归方程;
    利用条件概率公式即可;的取值为,分别计算各自概率,再利用期望公式即可.
    本题主要考查了线性回归方程的求解,考查了条件概率公式,以及离散型随机变量的分布列和期望,属于中档题.
     

    19.【答案】证明:分别取的中点,连接

    ,由题意可知,

    四边形为平行四边形,
    ,又平面
    平面,又平面平面平面
    解:由可得,以为坐标原点,
    直线分别为轴,建立空间直角坐标系
    三棱锥的体积为
    ,解得:


    为平面的一个法向量,

    ,则平面的一个法向量
    为平面的一个法向量,

    ,则平面的一个法向量

    设二面角的大小为
    即二面角的正弦值为 

    【解析】由面面垂直的判定定理即可证明;
    由三棱锥的体积公式可求出,以为坐标原点,直线分别为轴,建立空间直角坐标系,分别求出平面和平面的法向量,由二面角的向量公式求解即可.
    本题主要考查面面垂直的证明,二面角的求法,考查运算求解能力与逻辑推理能力,属于中档题.
     

    20.【答案】解:的半焦距为,则,所以,所以
    不妨设,与联立得
    由题意得
    联立并解得
    E的方程为
    ,则
    所以直线的斜率
    直线的方程为,代人,得

    所以

    所以
    所以
    当且仅当,即时等号成立,
    所以当时,取得最小值,且最小值为 

    【解析】根据离心率、渐近线方程和点到直线距离公式即可得到相关方程,解出即可;
    ,则,得到直线的方程,将其与椭圆方程联立得到韦达定理式,计算,再利用基本不等式即可得到答案.
    本题考查育德几何性质,设而不求法与伟韦达定理的应用,属中档题.
     

    21.【答案】解:的定义域为,且
    时,上单调递增,不可能有两个零点,舍去.
    时,令,解得:,令,解得:
    上单调递减,在上单调递增,
    有两个不同的零点,则,解得
    时,上存在唯一的一个零点;
    时,取正整数,则

    时,令
    上单调递增,

    上单调递增,,故
    ,于是,要使
    只需,即
    这样,当时,只需取正整数,则,又
    上存在唯一的一个零点;
    综上,,即实数的取值范围是
    证明:,则
    有两个不同的极值点,则
    要证,只要证
    只要证
    ,作差得
    原不等式等价于要证明,即
    ,则以上不等式等价于要证
    ,则
    上单调递增,,即
     

    【解析】求导,分类讨论判断的单调性,进而根据零点运算求解;
    根据极值点的概念整理原不等式可得,构建新函数,求导,利用导数证明
    本题主要考查利用导数研究函数的极值,已知函数零点个数求参数范围问题,不等式的证明,考查运算求解能力,属于难题.
     

    22.【答案】解:
    ,即
    ,则
    整理得,即的直角坐标方程为
    ,解得,即轴交点的直角坐标为
    故对应的极坐标分别为
    由题意得直线的方程为,则点的直角坐标为
    将直线的参数方程为参数代人的直角坐标方程,得
    显然
    设点对应的参数分别为,则
    显然一正一负,
     

    【解析】利用二倍角公式可得,然后利用化简可得的直角坐标方程,求得与轴交点的直角坐标,即可得出答案;
    设点对应的参数分别为,将直线的参数方程代人的直角坐标方程可得到,即可得出答案.
    本题考查参数方程与普通方程、极坐标方程之间的互相转化,考查转化思想和方程思想,考查逻辑推理能力和运算能力,属于中档题.
     

    23.【答案】解:时,不等式化为
    所以
    时,同理可得
    联立,解得
    时,原不等式为
    显然恒成立,所以

    所以
    因为,所以,所以上恒成立.
    ,则
    因为
    当且仅当,即时等号成立,所以
    所以,即实数的取值范围为 

    【解析】代入得,联立即可得到答案;
    化简得,分离参数得上恒成立,再利用基本不等式即可得到右边最值,即可得到答案.
    本题主要考查函数恒成立求参数范围问题,考查运算求解能力,属于中档题.
     

    相关试卷

    河南省驻马店市2023届高考三模理科数学试题(含解析): 这是一份河南省驻马店市2023届高考三模理科数学试题(含解析),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省洛阳市高考数学综合练习试卷(理科)(三)-普通用卷: 这是一份2023年河南省洛阳市高考数学综合练习试卷(理科)(三)-普通用卷,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省驻马店市高考数学三模试卷(文科)-普通用卷: 这是一份2023年河南省驻马店市高考数学三模试卷(文科)-普通用卷,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map