中考数学二轮复习压轴题精讲专题3:二次函数与等腰直角三角形 (含答案详解)
展开
这是一份中考数学二轮复习压轴题精讲专题3:二次函数与等腰直角三角形 (含答案详解),共17页。试卷主要包含了B,其对称轴为直线l等内容,欢迎下载使用。
二次函数与等腰直角三角形1 .如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【解析】
分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;
(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;
(3)存在四种情况:
如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.
详解:(1)如图1,设抛物线与x轴的另一个交点为D,
由对称性得:D(3,0),
设抛物线的解析式为:y=a(x-1)(x-3),
把A(0,3)代入得:3=3a,
a=1,
∴抛物线的解析式;y=x2-4x+3;
(2)如图2,设P(m,m2-4m+3),
∵OE平分∠AOB,∠AOB=90°,
∴∠AOE=45°,
∴△AOE是等腰直角三角形,
∴AE=OA=3,
∴E(3,3),
易得OE的解析式为:y=x,
过P作PG∥y轴,交OE于点G,
∴G(m,m),
∴PG=m-(m2-4m+3)=-m2+5m-3,
∴S四边形AOPE=S△AOE+S△POE,
=×3×3+PG?AE,
=+×3×(-m2+5m-3),
=-m2+m,
=(m-)2+,
∵-<0,
∴当m=时,S有最大值是;
(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,
∵△OPF是等腰直角三角形,且OP=PF,
易得△OMP≌△PNF,
∴OM=PN,
∵P(m,m2-4m+3),
则-m2+4m-3=2-m,
解得:m=或,
∴P的坐标为(,)或(,);
如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,
同理得△ONP≌△PMF,
∴PN=FM,
则-m2+4m-3=m-2,
解得:x=或;
P的坐标为(,)或(,);
综上所述,点P的坐标是:(,)或(,)或(,)或(,).
点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2 .定义:函数的伴随函数是.如:函数的伴随函数是.
(1)函数的图像经过点, ,求它的伴随函数;
(2)函数的图像与它的伴随函数图像交于A,B两点(点A在点B的左侧),与伴随函数的对称轴交于点P,它的伴随函数图像交轴于C,D两点(点C在点D的左侧),伴随函数的图像经过点(-l,0).设的面积为S.
①函数与它的伴随函数图像交于点(________,________),(________,________)(用含b的代数式表示);
②当伴随函数的对称轴在直线右侧时,求S与b之间的函数关系式;
(3)函数图像与它的伴随函数图像交于A,B两点(点A在点B的左侧).与x轴交于点Q,点A关千它的伴随函数对称轴的对称点为点,当是等腰直角三角形时,直接写出c的值.【答案】(1);(2)①;;②当时,;当时,;当时,;(3)1,-1,【解析】
【分析】
(1)将点,代入,解得b、c的值,再代入伴随函数即可;
(2)①图象交点即是解析式方程的公共解,联立两个解析式,转化成解一元二次方程,即可解出两个交点的横坐标,将代入伴随函数,可得c与b的关系式,从而解得交点坐标;②由①中c、b的关系式解得函数与其伴随函数,分别求出点C、D、P的坐标,分三种情况讨论:或,根据三角形面积公式解题;
(3)分两种情况讨论:当b>0时与当b<0时,由抛物线的对称性解得坐标,进而再讨论当或时,由直线AQ的斜率解题即可.
【详解】
解:(1)把(3,0),(0,-3)代入中,
得 解得
∴伴随函数是.
(2)①解得或,伴随函数经过,,函数与它的伴随函数图象相交于点 ,
故答案为:,;
②由①知,伴随函数经过,,函数的伴随函数是
令y=0,得
函数当时,.
当时,.
当时,.
(3)分两种情况讨论:
当b>0时,,
点A关于对称轴的对称点,
①当时,,等腰直角三角形中;
②当时,,,,;
当b<0时,,
点A关于对称轴的对称点,
①当时,,等腰直角三角形中;
②当时,,,,;
综上所述,c=1,-1,.
【点睛】
本题考查二次函数综合,其中涉及二次函数与x轴的交点、二次函数的对称轴、二次函数与一次函数图象的交点、一次函数的解析式、二次函数的解析式、一元二次方程、等腰直角三角形、三角形面积、分类讨论法等知识,是重要考点,难度较难,掌握相关知识是解题关键.3 .如图,已知直线交轴于点,交轴于点,抛物线经过点,与直线交于、两点,点为抛物线上的动点,过点作轴,交直线于点,垂足为.
(1)求抛物线的解析式;
(2)当点位于抛物线对称轴右侧时,点为抛物线对称轴左侧一个动点,过点作轴,垂足为点.若四边形为正方形时求点的坐标;
(3)若是以点为顶角顶点的等腰直角三角形时,请直接写出点的横坐标.【答案】(1)抛物线的解析式为;(2)四边形为正方形时点的坐标为和;(3)点的横坐标为2或-1或或.【解析】
【分析】
(1)先由二次函数解析式求出C点坐标,进而求出一次函数解析式,再求出B点坐标,最后把A、B坐标代入抛物线解析式解方程即可;
(2)四边形为正方形时,,轴,且P、Q两点关于对称轴对称,设出P点坐标,表示出,解方程即可;
(3)由是以点为顶角顶点的等腰直角三角形,可得∠QPF=∠PEB,即轴,可得P、Q两点关于对称轴对称,设,用分别表示Q、F坐标即可,最后根据PQ=PF列方程计算即可解题.
【详解】
(1)抛物线经过点,则点坐标为(0,3),
代入可得,则直线的解析式为.
直线经过点,则点坐标为(3,0)
将点、代入抛物线
解得,
∴抛物线的解析式为.
(2)抛物线的对称轴为.
∵四边形为正方形,∴,轴.
∴点与点关于直线对称.
设点,则,.
∴,解得:或(舍去)或或(舍去)
当时,点,
当时,点,
∴四边形为正方形时点的坐标为和
(3)点的横坐标为2或-1或或.
∵是以点为顶角顶点的等腰直角三角形
∴∠QPF=∠PEB=90°
∴轴
∴点与点关于直线对称.
设点,则,
∴.
∵,
∴,
解得:或或或
综上所述,点的横坐标为2或-1或或.
【点睛】
本题是二次函数综合题,熟记一次函数、正方形、等腰三角形的性质是解题的关键,难度一般,但是计算量比较大,需要注意.4 .将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.
(1)直接写出抛物线,的解析式;
(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;
(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.【答案】(1)抛物线的解析式为: y=x2-4x-2;抛物线的解析式为:y=x2-6;(2)点的坐标为(5,3)或(4,-2);(3)直线经过定点(0,2)【解析】
【分析】
(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;
(2)先判断出点A、B、O、D四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出是等腰直角三角形.设点A的坐标为(x,x2-4x-2),把DC和AC用含x的代数式表示出来,利用DC=AC列方程求解即可,注意有两种情况;
(3)根据直线(,为常数)与抛物线交于,两点,联立两个解析式,得到关于x的一元二次方程,根据根与系数的关系求出点M的横坐标,进而求出纵坐标,同理求出点N的坐标,再用待定系数法求出直线MN的解析式,从而判断直线MN经过的定点即可.
【详解】
解:(1)∵抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线,
∴抛物线的解析式为:y=(x-2)2-6,即y=x2-4x-2,
抛物线的解析式为:y=(x-2+2)2-6,即y=x2-6.
(2)如下图,过点A作AC⊥x轴于点C,连接AD,
∵是等腰直角三角形,
∴∠BOA =45°,
又∵∠BDO=∠BAO=90°,
∴点A、B、O、D四点共圆,
∴∠BDA=∠BOA=45°,
∴∠ADC=90°-∠BDA=45°,
∴是等腰直角三角形,
∴DC=AC.
∵点在抛物线对称轴右侧上,点在对称轴上,
∴抛物线的对称轴为x=2,
设点A的坐标为(x,x2-4x-2),
∴DC=x-2,AC= x2-4x-2,
∴x-2= x2-4x-2,
解得:x=5或x=0(舍去),
∴点A的坐标为(5,3);
同理,当点B、点A在x轴的下方时,
x-2= -(x2-4x-2),
x=4或x=-1(舍去),
∴点的坐标为(4,-2),
综上,点的坐标为(5,3)或(4,-2).
(3)∵直线(,为常数)与抛物线交于,两点,
∴,
∴x2-kx-6=0,
设点E的横坐标为xE,点F的横坐标为xF,
∴xE+xF=k,
∴中点M的横坐标xM==,
中点M的纵坐标yM=kx=,
∴点M的坐标为(,);
同理可得:点N的坐标为(,),
设直线MN的解析式为y=ax+b(a≠0),
将M(,)、N(,)代入得:,
解得:,
∴直线MN的解析式为y= ·x+2(),
不论k取何值时(),当x=0时,y=2,
∴直线经过定点(0,2).
【点睛】
本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A、B、O、D四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.5 .如图,已知抛物线经过,,三点.
(1)求该抛物线的解析式;
(2)经过点B的直线交y轴于点D,交线段于点E,若.
①求直线的解析式;
②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【答案】(1);(2)①;②(2,4)或(,)【解析】
【分析】
(1)根据待定系数法求解即可;
(2)①过点E作EG⊥x轴,垂足为G,设直线BD的表达式为:y=k(x-4),求出直线AC的表达式,和BD联立,求出点E坐标,证明△BDO∽△BEG,得到,根据比例关系求出k值即可;
②根据题意分点R在y轴右侧时,点R在y轴左侧时两种情况,利用等腰直角三角形的性质求解即可.
【详解】
解:(1)∵抛物线经过点,,,代入,
∴,解得:,
∴抛物线表达式为:;
(2)①过点E作EG⊥x轴,垂足为G,
∵B(4,0),
设直线BD的表达式为:y=k(x-4),
设AC表达式为:y=mx+n,将A和C代入,
得:,解得:,
∴直线AC的表达式为:y=2x+4,
联立:,
解得:,
∴E(,),
∴G(,0),
∴BG=,
∵EG⊥x轴,
∴△BDO∽△BEG,
∴,
∵,
∴,
∴,
解得:k=,
∴直线BD的表达式为:;
②由题意:设P(s,),1<s<4,
∵△PQR是以点Q为直角顶点的等腰直角三角形,
∴∠PQR=90°,PQ=RQ,
当点R在y轴右侧时,如图,
分别过点P,R作l的垂线,垂足为M和N,
∵∠PQR=90°,
∴∠PQM+∠RQN=90°,
∵∠MPQ+∠PQM=90°,
∴∠RQN=∠MPQ,又PQ=RQ,∠PMQ=∠RNQ=90°,
∴△PMQ≌△QNR,
∴MQ=NR,PM=QN,
∵Q在抛物线对称轴l上,纵坐标为1,
∴Q(1,1),
∴QN=PM=1,MQ=RN,
则点P的横坐标为2,代入抛物线得:y=4,
∴P(2,4);
当点R在y轴左侧时,
如图,分别过点P,R作l的垂线,垂足为M和N,
同理:△PMQ≌△QNR,
∴NR=QM,NQ=PM,
设R(t,),
∴RN==QM,
NQ=1-t=PM,
∴P(,2-t),代入抛物线,
解得:t=或(舍),
∴点P的坐标为(,),
综上:点P的坐标为(2,4)或(,).
【点睛】
本题是二次函数综合题,考查了待定系数法,等腰直角三角形的性质,全等三角形的判定和性质,一次函数,难度较大,解题时要理解题意,根据等腰直角三角形的性质构造全等三角形.6 .已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)当点P运动到什么位置时,△PAB的面积最大?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3 (2)(﹣,) (3)存在,P(﹣2,3)或P(,)【解析】
【分析】
(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t
【详解】
解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)
∴ 解得:
∴抛物线解析式为y=﹣x2﹣2x+3
(2)过点P作PH⊥x轴于点H,交AB于点F
∵x=0时,y=﹣x2﹣2x+3=3
∴A(0,3)
∴直线AB解析式为y=x+3
∵点P在线段AB上方抛物线上
∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)
∴F(t,t+3)
∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t
∴S△PAB=S△PAF+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+
∴点P运动到坐标为(﹣,),△PAB面积最大
(3)存在点P使△PDE为等腰直角三角形
设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)
∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t
∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4
∴对称轴为直线x=﹣1
∵PE∥x轴交抛物线于点E
∴yE=yP,即点E、P关于对称轴对称
∴=﹣1
∴xE=﹣2﹣xP=﹣2﹣t
∴PE=|xE﹣xP|=|﹣2﹣2t|
∵△PDE为等腰直角三角形,∠DPE=90°
∴PD=PE
①当﹣3<t≤﹣1时,PE=﹣2﹣2t
∴﹣t2﹣3t=﹣2﹣2t
解得:t1=1(舍去),t2=﹣2
∴P(﹣2,3)
②当﹣1<t<0时,PE=2+2t
∴﹣t2﹣3t=2+2t
解得:t1=,t2=(舍去)
∴P(,)
综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.
【点睛】
考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.
相关试卷
这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题3二次函数与等腰直角三角形问题(原卷版+解析),共74页。
这是一份中考数学二轮复习压轴题精讲专题6:二次函数与特殊四边形 (含答案详解),共22页。
这是一份中考数学二轮复习压轴题精讲专题5:二次函数与平行四边形 (含答案详解),共43页。