|试卷下载
搜索
    上传资料 赚现金
    2023年高考真题——数学(天津卷)(Word版含解析)
    立即下载
    加入资料篮
    2023年高考真题——数学(天津卷)(Word版含解析)01
    2023年高考真题——数学(天津卷)(Word版含解析)02
    2023年高考真题——数学(天津卷)(Word版含解析)03
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考真题——数学(天津卷)(Word版含解析)

    展开
    这是一份2023年高考真题——数学(天津卷)(Word版含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年普通高等学校招生全国统一考试(天津卷)

     

    一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)

    1. 已知集合,则   

    A.  B.  C.  D.

    【答案】A

    【解析】

    【分析】对集合B求补集,应用集合的并运算求结果;

    【详解】由,而

    所以.

    故选:A

    2. 的(   

    A. 充分不必要条件 B. 必要不充分条件

    C. 充分必要条件 D. 既不充分又不必要条件

    【答案】B

    【解析】

    【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.

    【详解】由,则,当不成立,充分性不成立;

    ,则,即,显然成立,必要性成立;

    所以的必要不充分条件.

    故选:B

    3. ,则的大小关系为(   

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】根据对应幂、指数函数的单调性判断大小关系即可.

    【详解】由R上递增,则

    上递增,则.

    所以.

    故选:D

    4. 函数的图象如下图所示,则的解析式可能为(   

       

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】由图知函数为偶函数,应用排除,先判断B中函数的奇偶性,再判断AC中函数在上的函数符号排除选项,即得答案.

    【详解】由图知:函数图象关于y轴对称,其为偶函数,且

    且定义域为R,即B中函数为奇函数,排除;

    ,即AC上函数值为正,排除;

    故选:D

    5. 已知函数的一条对称轴为直线,一个周期为4,则的解析式可能为(   

    A.  B.

    C.  D.

    【答案】B

    【解析】

    【分析】由题意分别考查函数的最小正周期和函数在处的函数值,排除不合题意的选项即可确定满足题意的函数解析式.

    【详解】由函数的解析式考查函数的最小周期性:

    A选项中B选项中

    C选项中D选项中

    排除选项CD

    对于A选项,当时,函数值,故是函数一个对称中心,排除选项A

    对于B选项,当时,函数值,故是函数的一条对称轴,

    故选:B.

    6. 已知为等比数列,为数列的前项和,,则的值为(   

    A. 3 B. 18 C. 54 D. 152

    【答案】C

    【解析】

    【分析】由题意对所给的递推关系式进行赋值,得到关于首项、公比的方程组,求解方程组确定首项和公比的值,然后结合等比数列通项公式即可求得的值.

    【详解】由题意可得:当时,,即   

    时,,即       

    联立①②可得,则.

    故选:C.

    7. 调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数,下列说法正确的是(   

     

    A. 花瓣长度和花萼长度没有相关性

    B. 花瓣长度和花萼长度呈现负相关

    C. 花瓣长度和花萼长度呈现正相关

    D. 若从样本中抽取一部分,则这部分的相关系数一定是

    【答案】C

    【解析】

    【分析】根据散点图的特点可分析出相关性的问题,从而判断ABC选项,根据相关系数的定义可以判断D选项.

    【详解】根据散点的集中程度可知,花瓣长度和花萼长度有相关性,A选项错误

    散点的分布是从左下到右上,从而花瓣长度和花萼长度呈现正相关性,B选项错误,C选项正确;

    由于是全部数据的相关系数,取出来一部分数据,相关性可能变强,可能变弱,即取出的数据的相关系数不一定是D选项错误

    故选:C

    8. 在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为(   

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】分别过,垂足分别为.平面,垂足为,连接,,垂足为.先证平面,则可得到,再证.由三角形相似得到,再由即可求出体积比.

    【详解】如图,分别过,垂足分别为.平面,垂足为,连接,,垂足为.

     

    因为平面平面,所以平面平面.

    又因为平面平面平面,所以平面,且.

    中,因为,所以,所以

    中,因为,所以

    所以

    故选:B

    9. 双曲线的左、右焦点分别为.过作其中一条渐近线的垂线,垂足为.已知,直线的斜率为,则双曲线的方程为(   

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】先由点到直线的距离公式求出,设,由得到.再由三角形的面积公式得到,从而得到,则可得到,解出,代入双曲线的方程即可得到答案.

    【详解】如图,

     

    因为,不妨设渐近线方程为,即

    所以

    所以.

    ,,所以,所以.

    ,所以,所以,所以

    所以

    因为

    所以

    所以,解得

    所以双曲线的方程为

    故选:D

    二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.

    10. 已知是虚数单位,化简的结果为_________

    【答案】##

    【解析】

    【分析】由题意利用复数的运算法则,分子分母同时乘以,然后计算其运算结果即可.

    【详解】由题意可得.

    故答案为:.

    11. 的展开式中,项的系数为_________

    【答案】

    【解析】

    【分析】由二项式展开式的通项公式写出其通项公式,令确定的值,然后计算项的系数即可.

    【详解】展开式的通项公式

    可得,

    项的系数为.

    故答案为:60.

    12. 过原点的一条直线与圆相切,交曲线于点,若,则的值为_________

    【答案】

    【解析】

    【分析】根据圆和曲线关于轴对称,不妨设切线方程为,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.

    【详解】易知圆和曲线关于轴对称,不妨设切线方程为

    所以,解得:,由解得:

    所以,解得:

    时,同理可得.

    故答案为:

    13. 甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为.这三个盒子中黑球占总数的比例分别为.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________

    【答案】    ①.     ②. ##

    【解析】

    【分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空;

    根据古典概型的概率公式可求出第二个空.

    【详解】设甲、乙、丙三个盒子中的球的个数分别为,所以总数为

    所以甲盒中黑球个数为,白球个数为

    甲盒中黑球个数为,白球个数为

    甲盒中黑球个数为,白球个数为

    记“从三个盒子中各取一个球,取到的球都是黑球”为事件,所以,

    记“将三个盒子混合后取出一个球,是白球”为事件

    黑球总共有个,白球共有个,

    所以,

    故答案为:

    14. 中,,点的中点,点的中点,若设,则可用表示为_________;若,则的最大值为_________

    【答案】    ①.     ②.

    【解析】

    【分析】1:根据向量的线性运算,结合的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.

    【详解】空1:因为的中点,则,可得

    两式相加,可得到

    ,则

    2:因为,则,可得

    得到

    ,即.

    于是.

    中,根据余弦定理:

    于是

    和基本不等式,

    ,当且仅当取得等号,

    时,有最大值.

    故答案为:.

     

    15. 若函数有且仅有两个零点,则的取值范围为_________

    【答案】

    【解析】

    【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.

    【详解】(1)当时,

    时,,此时成立;

    时,

    若方程有一根为,则,即

    若方程有一根为,则,解得:

    时,,此时成立.

    2)当时,

    时,,显然不成立;

    时,

    若方程有一根为,则,即

    若方程有一根为,则,解得:

    时,,显然不成立;

    综上,

    时,零点为

    时,零点为

    时,只有一个零点

    时,零点为

    时,只有一个零点

    时,零点为

    时,零点为

    所以,当函数有两个零点时,

    故答案为:

    【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.

    三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.

    16. 中,角所对的边分別是.已知

    1的值;

    2的值;

    3

    【答案】1   

    2   

    3

    【解析】

    【分析】(1)根据正弦定理即可解出;

    2)根据余弦定理即可解出;

    3)由正弦定理求出,再由平方关系求出,即可由两角差的正弦公式求出.

    【小问1详解】

    由正弦定理可得,,即,解得:

    【小问2详解】

    由余弦定理可得,,即

    解得:(舍去).

    【小问3详解】

    由正弦定理可得,,即,解得:,而

    所以都为锐角,因此

    17. 三棱台中,若分别是中点.

    1求证://平面

    2求平面与平面所成夹角的余弦值;

    3求点到平面的距离.

    【答案】1证明见解析   

    2   

    3

    【解析】

    【分析】1)先证明四边形是平行四边形,然后用线面平行的判定解决;

    2)利用二面角的定义,作出二面角的平面角后进行求解;

    3)方法一是利用线面垂直的关系,找到垂线段的长,方法二无需找垂线段长,直接利用等体积法求解

    小问1详解】

    连接.分别是的中点,根据中位线性质,//,且

    由棱台性质,//,于是//,由可知,四边形是平行四边形,则//

    平面平面,于是//平面.

    【小问2详解】

    ,垂足为,过,垂足为,连接.

    ,故,又平面,则平面.

    平面,故,又平面,于是平面

    平面,故.于是平面与平面所成角即.

    ,则,故,在中,,则

    于是

    【小问3详解】

    [方法一:几何法]

    ,垂足为,作,垂足为,连接,过,垂足为.

    由题干数据可得,,根据勾股定理,

    平面平面,则,又平面,于是平面.

    平面,则,又平面,故平面.

    中,

    ,故点到平面的距离是到平面的距离的两倍,

    即点到平面的距离是.

    [方法二:等体积法]

    辅助线同方法一.

    设点到平面的距离为.

    .

    ,即.

    18. 设椭圆的左右顶点分别为,右焦点为,已知

    1求椭圆方程及其离心率;

    2已知点是椭圆上一动点(不与端点重合),直线轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.

    【答案】1椭圆的方程为,离心率为.   

    2.

    【解析】

    【分析】1)由解得,从而求出,代入椭圆方程即可求方程,再代入离心率公式即求离心率.

    2)先设直线的方程,与椭圆方程联立,消去,再由韦达定理可得,从而得到点和点坐标.,即可得到关于的方程,解出,代入直线的方程即可得到答案.

    【小问1详解】

    如图,

     

    由题意得,解得,所以

    所以椭圆的方程为,离心率为.

    【小问2详解】

    由题意得,直线斜率存在,由椭圆的方程为可得

    设直线的方程为

    联立方程组,消去整理得:

    由韦达定理得,所以

    所以.

    所以,,

    所以

    所以,即

    解得,所以直线的方程为.

    19. 已知是等差数列,

    1的通项公式和

    2已知为等比数列,对于任意,若,则

    )当时,求证:

    )求的通项公式及其前项和.

    【答案】1   

    2()证明见解析;(),前项和为.

    【解析】

    【分析】(1)由题意得到关于首项、公差的方程,解方程可得,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前项和公式计算可得.

    (2)()利用题中的结论分别考查不等式两侧的情况,当时,

    ,当时,,取,即可证得题中的不等式;

    ()结合()中的结论猜想,然后分别排除两种情况即可确定数列的公比,进而可得数列的通项公式,最后由等比数列前项和公式即可计算其前项和.

    【小问1详解】

    由题意可得,解得

    则数列的通项公式为

    注意到,从共有项,

    .

    小问2详解】

    ()由题意可知,当时,

    ,则,即

    时,

    ,此时

    据此可得

    综上可得:.

    ()()可知:

    据此猜测

    否则,若数列的公比,则

    注意到,则不恒成立,即不恒成立,

    此时无法保证

    若数列的公比,则

    注意到,则不恒成立,即不恒成立,

    此时无法保证

    综上,数列的公比为,则数列的通项公式为

    其前项和为:.

    【点睛】本题的核心在考查数列中基本量的计算和数列中的递推关系式,求解数列通项公式和前项和的核心是确定数列的基本量,第二问涉及到递推关系式的灵活应用,先猜后证是数学中常用的方法之一,它对学生探索新知识很有裨益.

    20. 已知函数

    1求曲线处切线的斜率;

    2时,证明:

    3证明:

    【答案】1   

    2证明见解析    3证明见解析

    【解析】

    【分析】1)利用导数的几何意义求斜率;

    2)问题化为,构造,利用导数研究单调性,即可证结论;

    3)构造,作差法研究函数单调性可得,再构造,应用导数研究其单调性得到恒成立,对作放缩处理,结合累加得到,即可证结论.

    【小问1详解】

    ,则

    所以,故处的切线斜率为

    【小问2详解】

    要证,即证

    ,则

    所以上递增,则,即.

    所以.

    【小问3详解】

    由(2)知:,则

    所以,故上递减,故

    下证

    ,则

    递增,当递减,

    所以,故在恒成立,

    所以

    累加得:,而,则

    所以,故

    综上,,即.

    【点睛】关键点点睛:第三问,作差法研究单调性证右侧不等关系,再构造,导数研究其函数符号得恒成立,结合放缩、累加得到为关键.


     


     

    相关试卷

    2022年新高考天津数学高考真题(原卷版): 这是一份2022年新高考天津数学高考真题(原卷版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年高考真题——数学(天津卷)解析版: 这是一份2023年高考真题——数学(天津卷)解析版,共22页。

    2023年高考真题——数学(天津卷) Word版解析版: 这是一份2023年高考真题——数学(天津卷) Word版解析版,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map