- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题25 一次函数图形性质与规律综合应用(原卷版+解析版) 学案 4 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题26 一次函数与图形变换(3大类型)(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题28 一次函数与将军饮马最值综合应用(原卷版+解析版) 学案 4 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题29 一次函数与角度综合应用(原卷版+解析版) 学案 5 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题30 一次函数中等腰(直角)三角形存在问题综合应用(原卷版+解析版) 学案 4 次下载
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题27 一次函数应用(5大类型)(原卷版+解析版)
展开 专题27 一次函数应用(5大类型)
题型归纳
题型1:行程问题
题型2:分段函数问题
题型3:销售问题
题型4:方案问题
题型5:运输问题
典例分析
【考点1:行程问题】
【典例1】(2023春•南关区校级月考)甲车从A地出发匀速驶往B地,半个小时后,乙车沿同一路线由A地匀速驶往B地,两车距A地的路程y(km)与乙车出发时间x(h)之间的函数关系如图所示,根据图象回答下列问题:
(1)乙车速度是 km/h,a= ;
(2)求甲车距A地的路程y与x之间的函数解析式;
(3)直接写出在乙车行驶过程中,甲、乙两车相距15km时x的值.
【变式1-1】(2022秋•杨浦区期末)在全民健身环城越野赛中,甲乙两位选手都完成了比赛,甲的行程S(千米)随时间t(小时)变化的图象(全程)如图所示;乙的行程S(千米)随时间t(小时)的函数解析式为S=10t(0≤t≤2).
(1)在图中画出乙的行程S(千米)随时间t(小时)的函数图象;
(2)环城越野赛的全程是 千米;
(3)甲前0.5小时的速度是 千米/小时;
(4)甲和乙出发1小时后相遇,相遇时甲的速度是 千米/小时.
【变式1-2】(2022秋•阜新县校级期末)甲车从A地出发匀速向B地行驶,同时乙车从B地出发匀速向A地行驶,甲车行驶速度比乙车快,甲、乙两车距A地的路程y(千米)与行驶时间x(小时)之间的关系如图所示,请结合图象回答下列问题:
(1) 甲车速度为 km/h,乙车速度为 km/h;
(2)求乙车行驶过程中,y与x的函数关系式;
(3)在行驶过程中,两车出发多长时间,两车相距80千米?
【变式1-3】(2022秋•简阳市期末)甲、乙两车从A地出发匀速前往B地,甲比乙先出发1小时,结果比乙晚到30分钟,在整个行驶过程中,甲、乙两车距A地的路程y(km)与甲车行驶时间x(h)之间的函数关系如图所示.
(1)a= h,甲的速度是 km/h,乙的速度是 km/h;
(2)当1≤x≤4.5时,求乙车距离A地的路程y(km)与它行驶时间x(h)之间的函数关系式;
(3)求甲车出发多长时间,甲乙两车相距50km.
【考点2:分段函数问题】
【典例2】(2022春•雨花区校级期中)长沙市华益中学为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y(元)与使用面积x(m2)间的函数关系如图所示,乙种石材的价格为每平方米50元.
(1)求y与x的函数解析式;
(2)若校园文化墙总面积共600m2,其中使用甲石材xm2,设购买两种石材的总费用为w元,请直接写出w与x之间的函数解析式;
(3)在(2)的前提下,若甲种石材使用面积不少于200m2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?
【变式2】(2022•盘龙区一模)2020年是我国决胜脱贫攻坚的收官之年.在这个关键阶段,某网络电商企业响应中央号召,开展消费扶贫行动.利用互联网拓宽销售渠通,解决农产品“卖难”问题.该网络电商企业从一水果种植专业户处购进甲,乙两种水果进行销售,专业户为了感谢电商企业的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按16元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)请写出当0≤x≤60和x>60时,y与x之间的函数关系式;
(2)若电商企业计划一次性购进甲,乙两种水果共150千克,且甲种水果不少于50千克,但又不超过70千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W(元)最少?
【考点3:销售问题】
【典例3】(2023春•顺德区校级期中)抖音直播带货是目前非常盛行的销售方式.小徐为了推销家乡的水果“荔枝”和“龙眼”,在网上直播带货.小徐和她的团队,每天在家乡收购两种水果共600箱,且当天全部售出.进货成本、平台提成等成本,销售单价如表所示:
进货成本(元/箱)
平台提成等成本(元/箱)
销售单价(元/箱)
荔枝
36
6
50
龙眼
28
7
41
设该团队每天进货“荔枝”x箱,每天获得的利润为y元.
(1)求出y与x之间的函数关系式;
(2)若该团队每天投入总成本不超过23800元,应怎样安排“荔枝”和“龙眼”的进货量,可使该团队一天所获得的利润最大,请求出最大利润和此时两种水果的进货量.
【变式3-1】(2023春•萨尔图区校级月考)某商店出售普通练习本和精装练习本,150本普通练习本和100本精装练习本销售总额为1450元;200本普通练习本和50精装练习本销售总额为1100元.
(1)求普通练习本和精装练习本的销售单价分别是多少?
(2)该商店计划再次购进两种练习本500本,普通练习本的数量不低于精装练习本数量的3倍.已知普通练习本的进价为2元/个,精装练习本的进价为7元/个,设购买普通练习本m个,获得的利润为W元;
①求W关于m的函数关系式,并求出自变量m的取值范围;
②该商店应如何进货才能使销售总利润最大?并求出最大利润.
【变式3-2】(2023•雁塔区校级四模)春季是流感高发的季节,出门切记戴口罩.当下口罩市场出现热销,某药店老板用900元购进甲、乙两种型号的口罩在药店销售,销售完后共获利300元.进价和售价如表:
型号
价格
甲型口罩
乙型口罩
进价(元/袋)
2
3
售价(元/袋)
3
3.5
(1)该药店购进甲、乙两种型号口罩各多少袋?
(2)该药店第二次又以原来的进价购进甲、乙两种型号口罩共600袋,并且甲种口罩的数量不超过乙种口罩数量的2倍,并且此次用于购进口罩的资金不超过1480元.若两种型号的口罩都按原来的售价全部售完.设此次购进甲种口罩x袋,超市获利y元,试求y关于x的函数关系式,并求出最大利润.
【变式3-3】(2023•尉氏县一模)部分手机生产商以环保为名销售手机时不再搭配充电器,某电商看准时机,购进一批慢充充电器和快充充电器在网上销售,已知该电商销售10个慢充充电器和20个快充充电器的利润为400元;销售20个慢充充电器和10个快充充电器的利润为350元.
(1)求每个慢充充电器和每个快充充电器的销售利润;
(2)该电商购进两种型号的充电器共200个,其中快充充电器的进货量不超过慢充充电器的2倍,设购进慢充充电器x个,这200个充电器的销售总利润为y元.
①求y关于x的函数关系式;
②该电商购进两种充电器各多少个,才能使销售总利润最大?最大利润是多少?
【考点4:方案问题】
【典例4】(2023•虎林市校级一模)我市组织20辆汽车装运A,B,C三种水果共有100吨到外地销售.按计划20辆汽车都要装运,每辆汽车只能整吨装运同一种水果,且必须装满.
水果品种
A
B
C
每辆汽车运载量/吨
6
5
4
每吨水果获利/百元
12
16
10
根据表格中提供的信息,解答以下问题:
(1)设有x辆车装运A种水果,有y辆车装运B种水果,求y与x之间的函数关系式;
(2)如果装运每种水果的车都不少于4辆,那么可以安排哪几种运输方案?
(3)在(2)的条件下,若要此次销售获利最大,应安排哪种方案?求出最大利润.
【变式4-1】(2023•新市区一模)某鲜花销售公司每月付给销售人员的工资有两种方案.
方案一:没有底薪,只付销售提成;
方案二:底薪加销售提成.
如图中的射线l1,射线l2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x≥0)的函数关系.
(1)分别求y1、y2与x的函数解析式;
(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过3000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?
【变式4-2】(2023•禹州市一模)为弘扬爱国精神,传承民族文化,某校组织了“诗词里的中国”主题比赛,计划去某超市购买A,B两种奖品共300个,A种奖品每个20元,B种奖品每个15元,该超市对同时购买这两种奖品的顾客有两种销售方案(只能选择其中一种).
方案一:A种奖品每个打九折,B种奖品每个打六折.
方案二:A,B两种奖品均打八折.
设购买A种奖品x个,选择方案一的购买费用为y1元,选择方案二的购买费用为y2元.
(1)请分别写出y1,y2与x之间的函数关系式.
(2)请你计算该校选择哪种方案支付的费用较少.
【变式4-3】(2023•长安区模拟)富民杨梅是云南省富民县特产水果,中国地理标志产品(农产品地理标志).成片的杨梅园遍布富民的村村寨寨,处处洋溢着“种杨梅、摘杨梅、品杨梅、卖杨梅”的喜悦.小陈想在富民县某果园购买一些杨梅,经了解,该果园的杨梅有以下两种销售方案:
方案一:整箱销售(无包装),定价为10元/斤,如果一次性购买10斤以上,超过10斤部分的杨梅的价格打8折;
方案二:整箱销售(精美包装),每箱装10斤,定价为100元/箱.
(1)设小陈购买杨梅x斤,按方案一购买的付款金额为y1元,求出y1与x之间的函数关系式.
(2)若小陈想在该果园购买30斤杨梅,并将这些杨梅(每10斤装箱)送给外地的三个好朋友,已知小陈购买散称杨梅自己包装时,每10斤需要包装费5元.请你帮助小陈计算,按哪种方案购买更划算?
【考点5:运输问题】
【典例5】(2022春•江岸区校级月考)A城有肥料200t,B城有肥料300t,现要把这些肥料全部运往C、D两乡,从A城往C、D两乡运肥料的费元用分别为20元/t和25元/t;从B城往C、D两乡运肥料分别为15元/t和24元/t.现C乡需要肥料240t,D乡需要肥料260t,设A城运往C乡的肥料为x吨,运往C乡肥料的总运费为y1,运往D乡肥料的总运费为y2;
(1)写出y关于x的函数关系式以及y2关于x的函数关系式并指出自变量的取值范围;
(2)怎么样调度使得该过程的总运费最少并求出最少的运输费以及最少的运输方案;
(3)由于从B城到D乡开辟了一条新的公路,使B城到D乡的运输费每吨减少了a(2≤a≤8)元,如何调度才能使总运费最少?最少运输费是多少?(用含a的式子表达)
【变式5-1】(2022•莱西市一模)党中央提出构建“国内国际双循环”新发展格局.某物流公司承接A、B两种出口货物的运输业务,已知2021年3月份A货物运费单价为70元/吨,B货物运费单价为40元/吨,共收取运费180000元;4月份由于油价下调,运费单价下降为:A货物50元/吨,B货物30元/吨;该物流公司4月承接的两种货物的数量与3月份相同,4月份共收取运费130000元.
(1)该物流公司3月份运输两种货物各多少吨?
(2)该物流公司预计5月份运输这两种货物共3600吨,且A货物的数量不大于B货物的2倍,在运费单价与4月份相同的情况下,该物流公司5月份最多将收到多少运费?
【变式5-2】(2022春•黔东南州期末)A城有肥料200吨,B城有肥料300吨,现全部运往C,D两乡,从A城往C,D两乡运送肥料的费用分别是每吨20元和25元,从B城运往C,D两乡的运输费用分别是15元和24元,C乡需240吨,D乡需260吨,设A城运往C乡的肥料量为x吨,总运费为y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)求出总运费最低的调运方案,最低运费是多少?
夯实基础
1.(2023•武昌区校级模拟)如图,某容器的底面水平放置,容器上下皆为圆柱形,且大圆柱的底面半径是小圆柱的底面半径的2倍,高度也是小圆柱的2倍,匀速地向此容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系的图象如图所示,则灌满小圆柱时所需时间为( )
A. B. C. D.10
2.(2023•武汉模拟)A,B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系,当乙车出发2h时,两车相距是( )
A.km B.km C.13km D.40km
3.(2022秋•市中区期末)已知A,B两地间有汽车站C,客车由A地驶向C站,货车由B地经过C站去A地(客货车在A,C两地间沿同一条路行驶),两车同时出发,匀速行驶(中间不停留),货车的速度是客车速度的.如图所示是客、货车离C站的路程与行驶时间之间的函数关系图象,小明由图象信息得出如下结论:
①货车速度为60千米/时;
②B、C两地相距120千米;
③货车由B地到A地用12小时;
④客车行驶240千米时与货车相遇.
你认为正确的结论有( )
A.0 B.1 C.2 D.3
4.(2023春•滨海县月考)小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论; ①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1个小时;③小路的车出发后2.5小时追上小带的车;其中正确的结论有( )
A.①②③ B.①③ C.①② D.②
5.(2022秋•秦淮区期末)如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买6千克这种苹果比分六次购买1千克这种苹果可节省的金额为( )
A.5 B.6 C.7 D.8
6.(2022秋•道里区期末)2022年11月某市发生新冠疫情,为迅速阻断疫情传播,该市防疫指挥部迅速调集一批核酸采样队进驻某区进行核酸采样,为加快核酸采样进度,4小时后又增派第二批核酸采样队加入合做,完成剩下的全部核酸采样工作,设总工作量为单位1,采样进度与采样时间满足如图所示的函数关系,那么实际完成该区核酸采样所用的时间是( )小时.
A.4 B.8 C.10 D.12
7.(2022秋•章贡区校级期末)漏刻是我国古代的一种计时工具,据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用,小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位h(cm)是时间t(min)的一次函数,如下表是小明记录的部分数据,其中有一个h的值记录错误,请排除后利用正确的数据确定当时间t为8时,对应的高度h为( )
t(min)
……
0
1
2
3
……
h(cm)
……
0.7
1.2
1.5
1.9
……
A.3.3 B.3.65 C.3.9 D.4.7
8.(2022秋•舟山期末)甲、乙两人分别骑自行车和摩托车,从同一地点沿相同的路线前往距离120km的某地.如图l1,l2分别表示甲、乙两人离开出发地的距离s(km)与行驶时间t(h)之间的函数关系.问乙出发( )后两人相距12km.
A.2小时 B.小时
C.2小时或小时 D.1小时或
9.(2022秋•青田县期末)第十七届省运会在金华隆重举行.一批射击运动员分别乘坐甲乙两辆大巴同时从居住地前往比赛场馆.行驶过程中,大巴甲因故停留一段时间后继续驶向比赛场馆,大巴乙全程匀速驶向比赛场馆.两辆大巴的行程s(km)随时间t(h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是( )
A.大巴甲比大巴乙先到达比赛场馆
B.大巴甲中途停留了0.5h
C.大巴甲停留后用1.5h追上大巴乙
D.大巴甲停留后的平均速度是60km/h
10.(2023•东港区校级一模)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )
A.两车同时到达乙地
B.轿车行驶1.3小时时进行了提速
C.货车出发3小时后,轿车追上货车
D.两车在前80千米的速度相等
11.(2022秋•和平区校级期末)甲、乙两人分别乘不同的冲锋舟同时从A地匀速行驶前往B地,甲到达B地立即沿原路匀速返回A地,图中的折线OMC表示甲乘冲锋舟离A地的距离y(千米)与所用时间x(分钟)之间的函数关系:图中的线段ON表示乙乘冲锋舟离A地的距离y(千米)与所用时间x(分钟)之间的函数关系.
根据图象解答问题:
信息读取:
(1)A,B两地之间的距离为 千米,线段OM对应的函数关系式为 ,线段MC对应的函数关系式为 ,线段ON对应的函数关系式为 ;
图象理解:
(2)求图中线段ON和MC的交点D的坐标.
问题解决:
(3)直接写出整个行驶过程中,甲、乙两人所乘坐的冲锋舟之间的距离为5千米时,对应的行驶时间x的值.
12.(2023•甘南县一模)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:
(1)轿车到达乙地时,求货车与甲地的距离;
(2)求线段CD对应的函数表达式;
(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.
13.(2023•九台区一模)近年,净月潭公园将环潭公路改造为东北三省最长的人车分离彩色环保公路,平坦宽敞的路面分橙、黑两色,拓宽了原有的人行步道,成为市民健身的好去处.小明和爸爸参加了此公园举办的“亲子健身赛”,两人的行程y(千米)随时间x(时)变化的图象(全程)如图所示.
(1)两人出发后 小时相遇,此次“亲子健身赛”的全程是 千米.
(2)求出AB所在直线的函数关系式.
(3)若小明想和爸爸一起到达终点,则需在两人出发1.5小时后,将速度调整为 16 千米/时.
14.(2022春•南关区校级期中)一列城际快车从甲地出发匀速开往乙地,一列货运慢车从乙地出发匀速开往甲地.如图是快、慢两车离乙地的路程y(km)与快车行驶时间x(h)之间的函数图象.根据图象回答下列问题:
(1)甲、乙两地之间的距离为 km.
(2)当2≤x≤8时,
①求慢车离乙地的路程y与x之间的函数关系式.
②当x= (h)时,两车相遇.
(3)直接写出在慢车行驶过程中,两车相距50km时,x的值.
15.(2022•景宁县模拟)畲乡绿道是户外骑行的好去处,小明和爸爸在绿道骑车,两人骑车的路程s(米)与时间t(分)的关系如图所示.
(1)此次骑行全程 的函数关系式;
(3)当爸爸和小明相距1000米时,求t的值.
16.(2022秋•青岛期中)小李、小王两人从学校出发去图书馆,小李步行一段时间后,小王骑电动车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与小李出发时间t(分)之间的函数关系如图所示.
(1)请直接写出小李、小王两人的前行速度;
(2)请直接写出小李、小王两人前行的路程y1(米),y2(米)与小李出发时间t(分)之间的函数关系式;
(3)求小王出发多长时间,两人的路程差为240米.
17.(2022秋•罗湖区校级期中)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
(1)甲车出发 小时后,乙车才出发;
(2)甲车的速度为 km/h,乙车的速度为 km/h;
(3)甲、乙两车经过 小时后第一次相遇;
(4)当t为何值时,甲、乙两车相距20千米.(直接写出t的值)
18.(2022秋•市南区期末)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(元)与销售量x(kg)之间的关系如图所示.
(1)求出甲种苹果销售额y甲与销售量x之间的函数关系式;
(2)求点B的坐标,并写出点B表示的实际意义;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg(a>30)时,它们的利润和为1695元,求a的值.
19.(2022春•东莞市校级期中)甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y与x之间的函数图象如图所示.
(1)求乙车从B地到达A地的速度;
(2)求乙车到达B地时甲车距A地的路程;
(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.
20.(2023•合肥一模)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)求该班每年购买纯净水费用的最大值,并指出当a至少为多少时,该班学生集体改饮桶装纯净水更合算.
21.(2022秋•陕西期末)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x(元/千克)之间符合一次函数关系,如图所示.
(1)求y与x的函数关系式;
(2)某农户今年共采摘该蜜柚4500千克,其保质期为30天,若以14元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.
22.(2022秋•荥阳市校级期末)某便利店老板购进了A,B两种口罩各100包供甲、乙两个便利店进行销售,预计两个店每包口罩的利润(单位:元)如下表:
A种口罩
B种口罩
甲店
a
b
乙店
0.8
1
(1)若甲店销售A种口罩30包,B种口罩40包,可以盈利96元;销售A种口罩20包,B种口罩60包,可以盈利114元,求甲店这两种口罩每包的利润各是多少元.
(2)若甲、乙两个便利店各配货100包口罩,设给甲店配送A种口罩x包,两店总利润为w元,求w与x的函数关系.
(3)在(2)的条件下,且要保证乙店总利润不小于90元的条件下,请你设计出使便利店老板盈利最大的配货方案,并求出最大利润.
23.(2023•二道区校级一模)某工厂的销售部门提供两种薪酬计算方式:
薪酬方式一:底薪+提成,其中底薪为3000元,每销售一件商品另外获得15元的提成;
薪酬方式二:无底薪,每销售一件商品获得30元的提成.
设销售人员一个月的销售量为x(件),方式一的销售人员的月收入为y1(元),方式二的销售人员的月收入为y2(元).
(1)请分别写出y1、y2与x之间的函数表达式;
(2)哪种薪酬计算方式更适合销售人员?
24.(2022秋•张店区校级期末)某公司市场营销部的营销员的个人月收入y(元)与该营销员每月的销售量x(万件)成一次函数关系,其图象如图所示.根据图象提供的信息,解答下列问题:
(1)求出营销员的个人月收入y(元)与该营销员每月的销售量x(万件)(x≥0)之间的函数关系式;
(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.
25.(2022秋•东平县校级期末)如图,l1反映了某公司产品的销售收入y1(元)与销售量x的函数关系,l2反映了该公司产品的销售成本y2(元)与销售量x(t)的函数关系,根据图象解答问题:
(1)分别求出销售收入y1和销售成本y2与x的函数关系式;
(2)指出两图象的交点A的实际意义,公司的销售量至少要达到多少才能不亏损?
(3)如果该公司要盈利1万元,需要销售多少吨产品?
26.(2022•浙江三模)“戴口罩、勤洗手、常通风”已成为当下人们的生活习惯,某校为做好校园防护工作.计划采购一批洗手液,已知某超市推出以下两种优惠方案:
方案一:一律打八折.
方案二:购买量不超过200瓶时,按原价销售;超过200瓶时,超过的部分打六折.
设学校计划从该超市购买x瓶洗手液,方案一的费用为y1元,方案二的费用为y2元.y1、y2关于x的函数图象如图所示.
(1)该洗手液的标价为 元/瓶;
(2)若x≥200,求y2关于x的函数解析式;
(3)若该校计划购买420瓶洗手液.则选择哪种方案更省钱?请说明理由.
27.(2022春•景德镇期中)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2小时共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5小时共分拣垃圾8吨.
(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?
(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,机器人公司的报价如下表:
型号
原价
购买量不超过30台
购买量超过30台
A型
20万元/台
原价购买
打九折
B型
12万元/台
原价购买
打八折
①若要求这批机器人每小时一共能分拣垃圾20吨.设其中购买A型机器人x台(10≤x≤30),购买两种机器人总费用为W万元.求W与x的函数关系式,并说明如何购买总费用最少;
②为了加快垃圾分拣速度,垃圾处理厂计划用不超过140万元增购这两种机器人共10台,机器人公司全部以打折后价格销售,这10台机器人每小时最多处理多少吨垃圾?
28.(2022•通辽一模)某社会团体准备购进甲、乙两种防护服捐给一线抗疫人员,经了解,购进5件甲种防护服和4件乙种防护服需要2万元,购进10件甲种防护服和3件乙种防护服需要3万元.
(1)甲种防护服和乙种防护服每件各多少元?
(2)实际购买时,发现厂家有两种优惠方案,方案一:购买甲种防护服超过20件时,超过的部分按原价的8折付款,乙种防护服没有优惠;方案二:两种防护服都按原价的9折付款,该社会团体决定购买x(x>20)件甲种防护服和30件乙种防护服.
①求两种方案的费用y与件数x的函数解析式;
②请你帮该社会团体决定选择哪种方案更合算.
29.(2022春•铜仁市校级月考)王洋准备租车把一批梨子运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满梨子一次可运货17吨;用3辆甲型车和4辆乙型车装满梨子一次可运货24吨.根据以上信息,解答下列问题:
(1)1辆甲型车和1辆乙型车都装满梨子一次可分别运货多少吨?
(2)现有30吨梨子,王洋计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满梨子,请你帮他设计共有多少种租车方案?
(3)若1辆甲型车需租金180元/次,1辆乙型车需租金150元/次,请选出费用最少的租车方案,并求出最少租车费.
30.(2022秋•宁明县期中)某地A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨,现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.
(1)请填写表,并求出yA、yB与x之间的函数关系式.
C
D
总计
A
x吨
200吨
B
300吨
总计
240吨
260吨
500吨
(2)受到B村的经济承受能力的影响,B村的柑桔运费不得超过4830元,在这种情况下,请问怎样调运,才能使两村运费之和最小?并求出这个最小值.
31.(2022春•凤庆县期末)疫情面前没有旁观者,疫情防控没有局外人,抗击疫情,我们一起!某运输公司积极响应疫情防控号召,决定安排大、小卡车共20辆,运送296吨物资到甲地和乙地,支援当地抗击疫情.每辆大卡车装18吨物资,每辆小卡车装10吨物资,这20辆卡车恰好装完这批物资.已知这两种卡车的运费如表:
目的地
车型
甲地(元/辆)
乙地(元/辆)
大卡车
800
900
小卡车
400
600
现安排上述装好物资的20辆卡车(每辆大卡车装18吨物资,每辆小卡车装10吨物资)中的10辆前往甲地,其余前往乙地,设前往甲地的大卡车有x辆,这20辆卡车的总运费为w元.
(1)这20辆卡车中,大卡车、小卡车各有多少辆?
(2)求w与x的函数解析式,并直接写出x的取值范围:
(3)若运往甲地的物资不少于156吨,求总运费w的最小值.
32.(2022•济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:
货车类型
载重量(吨/辆)
运往A地的成本(元/辆)
运往B地的成本(元/辆)
甲种
16
1200
900
乙种
12
1000
750
(1)求甲、乙两种货车各用了多少辆;
(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.
①写出w与t之间的函数解析式;
②当t为何值时,w最小?最小值是多少?
【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题10 幂运算(三大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题10 幂运算(三大类型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题10幂运算三大类型解析版docx、期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题10幂运算三大类型原卷版docx等2份学案配套教学资源,其中学案共12页, 欢迎下载使用。
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题33 数据的分析(三大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题33 数据的分析(三大类型)(原卷版+解析版),文件包含专题33数据的分析三大类型解析版docx、专题33数据的分析三大类型原卷版docx等2份学案配套教学资源,其中学案共31页, 欢迎下载使用。
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题26 一次函数与图形变换(3大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题26 一次函数与图形变换(3大类型)(原卷版+解析版),文件包含专题26一次函数与图形变换3大类型解析版docx、专题26一次函数与图形变换3大类型原卷版docx等2份学案配套教学资源,其中学案共31页, 欢迎下载使用。