- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题08 平面直角坐标系中图形面积的求法(3大类型)(原卷版+解析版) 学案 10 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题09 平面直角坐标系中坐标规律(六大类型)(原卷版+解析版) 学案 9 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题11 平行线中翻折求角度问题高分突破(原卷版+解析版) 学案 6 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题12 平行拐点综合应用高分突破(40道)(原卷版+解析版) 学案 8 次下载
- 【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题13 二元一次方程组的解法高分突破(三大类型)(原卷版+解析版) 学案 11 次下载
【期末满分攻略】2022-2023学年人教版七年级数学下册讲学案-专题10 平行线常考解答压轴题高分突破(30道)(原卷版+解析版)
展开 专题10
平行线常考解答压轴题高分突破(30道)
真题再现
1.(2021秋•市中区期末)(1)探究:如图1,AB∥CD,点G、H分别在直线AB、CD上,连结PG、PH,当点P在直线GH的左侧时,试说明∠GPH=∠AGP+∠CHP;
(2)变式:如图2,将点P移动到直线GH的右侧,其他条件不变,试探究∠GPH、∠AGP、∠CHP之间的关系,并说明理由;
(3)(问题迁移)如图3,AB∥CD,点P在AB的上方,问∠GPH、∠AGP、∠CHP之间有何数量关系?请说明理由;
(4)(联想拓展)如图4所示,在(2)的条件下,已知∠GPH=α,∠PGB的平分线和∠PHD的平分线交于点Q,用含有α的式子表示∠GQH的度数.
2.(2022春•汉阳区期末)当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.
(1)如图①,若α=90°,判断入射光线EF与反射光线GH的位置关系,并说明理由.
(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.
(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)
3.(2021秋•金水区校级期末)【探究】
(1)如图1,∠ADC=120°,∠BCD=130°,∠DAB和∠CBE的平分线交于点F,则∠AFB= °;
(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB= ;(用α、β表示)
(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG、BH平行时,α、β应该满足怎样的数量关系?请证明你的结论.
【挑战】
如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,你又可以找到怎样的数量关系?画出图形并直接写出结论.
4.(2021春•红谷滩区校级期中)如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.
(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?
解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为 ,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为 .
(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
①若∠EPF=60°,则∠EQF= .
②猜想∠EPF与∠EQF的数量关系,并说明理由;
③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)
5.(2022秋•城关区校级期末)问题情境:
(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答
问题迁移:
(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.
6.(2022春•城厢区期中)如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE∥AB,连接AE,∠B=∠E.
(1)求证:AE∥BC;
(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.若∠E=65°,
①如图2,当DE⊥DQ时,则∠Q的度数是 ;
②在整个运动中,当∠Q=2∠EDQ时,求∠Q的度数.
7.(2022春•江夏区校级月考)如图,AB∥CD,点P为AB上方一点,E在直线AB上.
(1)如图1,求证:∠P=∠PEB﹣∠C;
(2)如图2,点F为直线CD上一点,∠PEB、∠CFP的角平分线所在直线交于点Q,求∠P与∠Q的数量关系;
(3)如图3,N为AB、CD之间一点,且在∠CPE内部,∠EPN=n∠CPN、∠DCN=n∠PCN,当2∠CNP﹣∠PEA=180°恒成立时,n= .
8.(2022春•思明区校级期末)如图1,AB∥CD,E为AB上一点,点P在线段CE上,且PD∥CF.
(1)求证:∠AEC+∠DCF=∠DPE;
(2)如图2,在线段CF上取点H,使∠HPF=∠HFP,若CD平分∠ECF,PQ平分∠EPH,∠HPQ+∠AEC=90°,试判断PF与EF的大小关系.
9.(2022春•武汉期末)已知:点E在直线AB上,点F在直线CD上,AB∥CD.
(1)如图1,连EF,EP平分∠AEF,FP平分∠CFE,求∠P的度数.
(2)如图2,若∠EGF=160°,射线EH,FH分别在∠AEG,∠CFG的内部,且∠EHF=40°,当∠AEG=4∠AEH时,求的值.
(3)如图3,在(1)的条件下,在直线CD上有一动点M(点M不与点F重合),EN平分∠MEF,若∠PEN=α(0°<α<90°),请直接写出∠EMF= (结果用含α的式子表示).
10.(2022春•涪陵区校级期中)AB∥CD,直线EF交AB于点E,交CD于点F,点G在CD上,点P在直线EF右侧、且在直线AB和CD之间,连接PE、PG.
(1)如图1,求证:∠EPG=∠BEP+∠PGD;
(2)如图1,连接EG,若EG平分∠PEF,∠BEP+∠PGE=110°,∠PGD=∠EFD,∠PGD=30°.求∠BEP的度数;
(3)如图2,若EF平分∠PEA,∠PGD的平分线GN所在的直线与EF相交于点H,则∠EPG与∠EHG之间的数量关系,并说明理由.
11.(2022春•兴宁区校级期中)问题探究:
如图①,已知AB∥CD,我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?
张山同学:如图②,过点E作EF∥AB,把∠BED分成∠BEF与∠DEF的和,然后分别证明∠BEF=∠B,∠DEF=∠D.
李思同学:如图③,过点B作BF∥DE,则∠E=∠EBF,再证明∠ABF=∠D.
问题解答:
(1)请按张山同学的思路,写出证明过程;
(2)请按李思同学的思路,写出证明过程;
问题迁移:
(3)如图④,已知AB∥CD,EF平分∠AEC,FD平分∠EDC.若∠CED=3∠F,请直接写出∠F的度数.
12.(2022春•朝阳区校级期中)如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.
(1)直接写出∠AHE,∠FAH,∠KEH之间的关系: .
(2)若∠BEF=∠BAK,求∠AHE.
(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.
13.(2021秋•王益区期末)已知:∠AOB=α(0°<α<90°),一块三角板CDE中,∠CED=90°,∠CDE=30°,将三角板CDE如图所示放置,使顶点C落在OB边上,经过点D作直线MN∥OB交OA边于点M,且点M在点D的左侧.
(1)如图,若CE∥OA,∠NDE=45°,则α= °;
(2)若∠MDC的平分线DF交OB边于点F,
①如图,当DF∥OA,且α=60°时,试说明:CE∥OA;
②如图,当CE∥OA保持不变时,试求出∠OFD与α之间的数量关系.
14.(2022春•南山区校级期末)如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°.
(1)求证:AB∥CD;
(2)如图2,AB∥CD,BG平分∠ABE,与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°,求∠DEB的度数.
(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说明理由.
15.(2022秋•宛城区校级期末)如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°
(1)观察猜想
将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN= 105 °.
(2)操作探究
将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;
(3)深化拓展
将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC旋转 °时,边CD恰好与边MN平行.(直接写出结果)
16.(2022春•广陵区期中)已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED= °;
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.
17.(2021秋•井研县期末)已知:如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM,CE⊥CD.
(1)若∠O=50°,求∠BCD的度数;
(2)求证:CE平分∠OCA;
(3)当∠O为多少度时,CA分∠OCD成1:2两部分,并说明理由.
18.(2021春•北海期末)如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
19.(2021春•兴宾区期末)已知直线l1∥l2,点A,C分别在l1,l2上,点B在直线l1,l2之间,且∠BCN<∠BAM≤90°.
(1)如图①,求证:∠ABC=∠BAM+∠BCN.
阅读并将下列推理过程补齐完整:
过点B作BG∥NC,因为l1∥l2,
所以AM∥ ( ).
所以∠ABG=∠BAM,∠CBG=∠BCN( ).
所以∠ABC=∠ABG+∠CBG=∠BAM+∠BCN.
(2)如图②,点D,E在直线l1上,且∠DBC=∠BAM,BE平分∠ABC.
求证:∠DEB=∠DBE;
(3)在(2)的条件下,如果∠CBE的平分线BF与直线l1平行,试确定∠BAM与∠BCN之间的数量关系,并说明理由.
20.(2021春•桂林期末)已知:直线a∥b,点A和点B是直线a上的点,点C和点D是直线b上的点,连接AD,BC,设直线AD和BC交于点E.
(1)在如图1所示的情形下,若AD⊥BC,求∠ABE+∠CDE的度数(提示:可过点E作EG∥AB);
(2)在如图2所示的情形下,若BF平分∠ABC,DF平分∠ADC,且BF与DF交于点F,当∠ABC=64°,∠ADC=72°时,求∠BFD的度数.
(3)如图3,当点B在点A的右侧时,若BF平分∠ABC,DF平分∠ADC,且BF,DF交于点F,设∠ABC=α,∠ADC=β,用含有α,β的代数式表示∠BFD的补角.(直接写出结果即可)
21.(2021春•新洲区期末)如图1,点E在直线AB、DC之间,且∠DEB+∠ABE﹣∠CDE=180°.
(1)求证:AB∥DC;
(2)若点F是直线BA上的一点,且∠BEF=∠BFE,EG平分∠DEB交直线AB于点G,若∠D=20°,求∠FEG的度数;
(3)如图3,点N是直线AB、DC外一点,且满足∠CDM=∠CDE,∠ABN=∠ABE,ND与BE交于点M.已知∠CDM=α(0°<α<12°),且BN∥DE,则∠NMB的度数为 (请直接写出答案,用含α的式子表).
22.(2021春•南京期中)(1)证明:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直.
已知:如图①,AB∥CD, .
求证: .
证明:
(2)如图②,AB∥CD,点E、F分别在直线AB、CD上,EM∥FN,∠AEM与∠CFN的角平分线相交于点O.求证:EO⊥FO.
(3)如图③,AB∥CD,点E、F分别在直线AB、CD上,EM∥PN,MP∥NF,∠AEM与∠CFN的角平分线相交于点O,∠P=102°,求∠O的度数.
23.(2021春•梁溪区期中)已知,AE∥BD,∠A=∠D.
(1)如图1,求证:AB∥CD;
(2)如图2,作∠BAE的平分线交CD于点F,点G为AB上一点,连接FG,若∠CFG的平分线交线段AG于点H,求证:∠ECF+2∠AFH=∠E+2∠BHF;
(3)如图3,在(2)的条件下,连接AC,若∠ACE=∠BAC+∠BGM,过点H作HM⊥FH交FG的延长线于点M,且2∠E﹣3∠AFH=20°,求∠EAF+∠GMH的度数.
24.(2022春•金牛区校级月考)已知,AB∥CD,CF平分∠ECD.
(1)如图1,若∠DCF=25°,∠E=20°,求∠ABE的度数.
(2)如图2,若∠EBF=2∠ABF,∠CFB的2倍与∠CEB的补角的和为190°,求∠ABE的度数.
(3)如图3,在(2)的条件下,P为射线BE上一点,H为CD上一点,PK平分∠BPH,HN∥PK,HM平分∠DHP,∠DHQ=2∠DHN,求∠PHQ的度数.
25.(2021春•莆田期末)如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE=45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).
(1)当α为 度时,AD∥BC,并在图3中画出相应的图形;
(2)在旋转过程中,试探究∠CAD与∠BAE之间的关系;
(3)当△ADE旋转速度为5°/秒时,且它的一边与△ABC的某一边平行(不共线)时,直接写出时间t的所有值.
26.(2021春•番禺区校级期中)如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.
(1)求证:∠MAG+∠PBG=90°;
(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;
(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.
27.(2022春•源城区期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系 ;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
28.(2020秋•香坊区校级期中)已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.
(1)如图①,求∠MPQ的度数(用含α的式子表示);
(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;
(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.
29.(2020春•叶集区期末)如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
30.(秋•市南区期末)已知,BC∥OA,∠B=∠A=108°,试解答下列问题:
(1)如图①,则∠O= ,则OB与AC的位置关系为
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于 ;
(3)在第(2)题的条件下,若平行移动AC到如图③所示位置.
①在AC移动的过程中,∠OCB与∠OFB的比值是否发生改变,若不改变求出其比值,若要改变说明理由;
②当∠OEB=∠OCA时,求∠OCA.
【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题04 平行线常考解答题必刷: 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题04 平行线常考解答题必刷,共38页。
【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题10 函动点问题中函数图像压轴突破-2022-2023学年七年级数学下册《高分突破.培优新方法》(北师大版)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题10 函动点问题中函数图像压轴突破-2022-2023学年七年级数学下册《高分突破.培优新方法》(北师大版)(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题10函动点问题中函数图像压轴突破解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题10函动点问题中函数图像压轴突破原卷版docx等2份学案配套教学资源,其中学案共44页, 欢迎下载使用。
【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题05 平行线判定与性质常考解答题(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题05 平行线判定与性质常考解答题(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题05平行线判定与性质常考解答题解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题05平行线判定与性质常考解答题原卷版docx等2份学案配套教学资源,其中学案共36页, 欢迎下载使用。