所属成套资源:中考数学二轮复习重难点复习题型 (2份打包,原卷版+解析版)
- 中考数学二轮复习重难点复习题型02 规律探索 类型一 数式规律(专题训练)(2份打包,原卷版+解析版) 试卷 1 次下载
- 中考数学二轮复习重难点复习题型03 方程应用 类型三 二次方程(专题训练)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习重难点复习题型02 规律探索(复习讲义)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习重难点复习题型03 方程应用 类型一 一次方程及不等式(专题训练)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习重难点复习题型03 方程应用(复习讲义)(一次方程、不等式、分式方程、二次方程应用)(2份打包,原卷版+解析版) 试卷 0 次下载
中考数学二轮复习重难点复习题型03 方程应用 类型二 分式方程(专题训练)(2份打包,原卷版+解析版)
展开
这是一份中考数学二轮复习重难点复习题型03 方程应用 类型二 分式方程(专题训练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点复习题型03方程应用类型二分式方程专题训练解析版doc、中考数学二轮复习重难点复习题型03方程应用类型二分式方程专题训练原卷版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
题型三 方程应用
类型二 分式方程(专题训练)
1.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是( )
A. B. C. D.
【答案】B
【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.
【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,
根据题意,可列方程:,故选:B.
【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.
2.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用天,现在甲、乙两队合做天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为天,下面所列方程中错误的是( )
A. B. C. D.
【答案】D
【分析】设总工程量为,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期天,所以乙的工作效率为,根据甲、乙两队合做天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.
【详解】解:设规定日期为天,由题意可得,,
整理得,或或.
则选项均正确,故选:D.
【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
3.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程,则方程中x表示( )
A.足球的单价 B.篮球的单价 C.足球的数量 D.篮球的数量
【答案】D
【分析】由的含义表示的是篮球单价比足球贵30元,从而可以确定x的含义.
【详解】解:由可得:
由表示的是足球的单价,而表示的是篮球的单价,
表示的是购买篮球的数量,故选D
【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键.
4.(2021·内蒙古鄂尔多斯市·中考真题)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x元,可列方程为( )
A. B.
C. D.
【答案】C
【分析】
根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.
【详解】
解:设2020年每包口罩x元,则2021年每包口罩(x-10)元.
根据题意,得,
即:
故选:C
【点睛】
本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.
5.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为,则下列方程中正确的是( )
A. B. C. D.
【答案】D
【分析】
根据题意可直接进行求解.
【详解】
解:由题意得:;
故选D.
【点睛】
本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.
6.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得( )
A. B.
C. D.
【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.
【解析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,
依题意,得:.
故选:B.
7.(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
A.3(x﹣1) B.3
C.3x﹣1 D.3
【分析】根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.
【解析】依题意,得:3(x﹣1).
故选:A.
8.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为( )
A. B.80
C.80 D.
【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.
【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,
依题意,得:.
故选:D.
9.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )
A.40 B.40
C.40 D.40
【分析】设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x的分式方程,此题得解.
【解析】设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,
依题意,得:40,
即40.
故选:A.
10.(2020•襄阳)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?
【分析】设原来每天用水量是x吨,则现在每天用水量是x吨,根据现在120吨水比以前可多用3天,即可得出关于x的分式方程,解之经检验后即可得出结论.
【解析】设原来每天用水量是x吨,则现在每天用水量是x吨,
依题意,得:3,
解得:x=10,
经检验,x=10是原方程的解,且符合题意,
∴x=8.
答:现在每天用水量是8吨.
11.(2021·山东东营市·中考真题)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为万平方米,则所列方程为________.
【答案】
【分析】
原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,根据工作时间=工作总量工作效率,结合实际比原计划提前30天完成了这一任务,即可列出关于的分式方程.
【详解】
设原计划每天绿化的面积为万平方米,则实际每天绿化的面积为万平方米,
依据题意:
故答案为:
【点睛】
本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
12.(2021·辽宁本溪市·中考真题)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A种奖品的单价比B种奖品的单价多10元,用300元购买A种奖品的数量与用240元购买B种奖品的数量相同.设B种奖品的单价是x元,则可列分式方程为________.
【答案】
【分析】
设B种奖品的单价为x元,则A种奖品的单价为(x+10)元,利用数量=总价÷单价,结合用300元购买A种奖品的件数与用240元购买B种奖品的件数相同,即可得出关于x的分式方程.
【详解】
解:设B种奖品的单价为x元,则A种奖品的单价为(x+10)元,
依题意得:,
故答案为:
【点睛】
本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.
13.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.
【答案】
【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.
【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得.
故答案为:.
【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.
14.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.
【答案】摩托车的速度为40千米/时
【分析】设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】解:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,
依题意,得:,解得:x=40,
经检验,x=40是所列方程的根,且符合题意,
答:摩托车的速度为40千米/时.
【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从地沿相同路线骑行去距地30千米的地,已知甲骑行的速度是乙的1.2倍.
(1)若乙先骑行2千米,甲才开始从地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;
(2)若乙先骑行20分钟,甲才开始从地出发,则甲、乙恰好同时到达地,求甲骑行的速度.
【答案】(1) (2)千米/时
【分析】(1)设乙的速度为千米/时,则甲的速度为千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为千米/时,则甲的速度为千米/时,根据甲、乙恰好同时到达地列方程求解即可.
(1)解:设乙的速度为千米/时,则甲的速度为千米/时,
由题意得:,解得:,
则(千米/时),
答:甲骑行的速度为千米/时;
(2)设乙的速度为千米/时,则甲的速度为千米/时,
由题意得:,解得,
经检验是分式方程的解,
则(千米/时),
答:甲骑行的速度为千米/时.
【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.
16.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
【答案】张老师骑车的速度为千米/小时
【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.
【详解】解:设张老师骑车的速度为千米/小时,则汽车速度是千米/小时,
根据题意得:,解之得,
经检验是分式方程的解,
答:张老师骑车的速度为千米/小时.
【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.
17.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?
【答案】每个小组有学生10名.
【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.
【详解】解:设每个小组有学生x名,
根据题意,得,
解这个方程,得x=10,
经检验,x=10是原方程的根,
∴每个小组有学生10名.
【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.
18.(2021·辽宁丹东市·中考真题)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?
【答案】甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.
【分析】
根据题意列出方程求解即可.
【详解】
解:设甲工程队每天改造的道路长度是x米,
列方程得:,
解得:x=80.
80-20=60.
答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.
【点睛】
此题考查了分式方程应用题的解法,解题的关键是根据题意找到等量关系并列出方程.
19.(2021·江苏徐州市·中考真题)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?
【答案】50
【分析】
该商品打折卖出x件,找到等量关系即可.
【详解】
解:该商品打折卖出x件
解得x=8
经检验:是原方程的解,且符合题意
∴商品打折前每件元
答:该商品打折前每件50元.
【点睛】
此题考查分式方程实际问题中的销售问题,找到等量关系是解题的关键.
20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?
【答案】该景点在设施改造后平均每天用水2吨.
【分析】
设该景点在设施改造后平均每天用水x吨,则原来平均每天用水2x吨,列出分式方程,即可求解.
【详解】
解:设该景点在设施改造后平均每天用水x吨,则原来平均每天用水2x吨,
由题意得:,解得:x=2,
经检验:x=2是方程的解,且符合题意,
答:该景点在设施改造后平均每天用水2吨.
【点睛】
本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.
21.(2021·吉林长春市·中考真题)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同,求每千克有机大米的售价为多少元?
【答案】每千克有机大米的售价为7元.
【分析】
设每千克有机大米的售价为x元,则每千克普通大米的售价为(x-2)元,根据“用420元购买的有机大米与用300元购买的普通大米的重量相同”,列出分式方程,即可求解.
【详解】
解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x-2)元,
根据题意得:,解得:x=7,
经检验:x=7是方程的解,且符合题意,
答:每千克有机大米的售价为7元.
【点睛】
本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.
22.(2021·辽宁营口市·中考真题)为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.
(1)求这两种图书的单价分别是多少元?
(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?
【答案】(1)“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)最多能购买“科普类”图书33本.
【分析】
(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,根据数量=总价÷单价,结合购买“科普类”图书的数量比“文学类”图书的数量多20本,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设能购买“科普类”图书m本,根据总价=单价×数量,列出不等式,即可求解.
【详解】
解:(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,
依题意,得: ,
解得:x=15,
经检验,x=15是所列分式方程的解,且符合题意,
∴1.2x=18.
答:“文学类”图书的单价为15元,则“科普类”图书的单价为18元;
(2)设能购买“科普类”图书m本,
根据题意得:18m+15(100-m)≤1600,
解得:,
∵m为整数,
∴最多能购买“科普类”图书33本.
【点睛】
本题考查了分式方程的应用以及不等式的应用,找准数量关系,正确列出分式方程和一元一次不等式是解题的关键.
23.(2021·山东济宁市·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.
【分析】
(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.
【详解】
解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:
,
整理得:x2-18x+45=0,
解得:x=15或x=3(舍去),
经检验,x=15是原分式方程的解,符合实际,
∴x-5=15-5=10(元),
答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:
w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,
∵a=-20,
当a=5时,函数有最大值,最大值是2000元,
答:当降价5元时,该商场利润最大,最大利润是2000元.
【点睛】
本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式.
24.(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
(1)求小刚跑步的平均速度;
(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
【答案】(1)小刚跑步的平均速度为150米/分;(2)小刚不能在上课前赶回学校,见解析
【分析】
(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;
(2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可.
【详解】
解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,
根据题意,得,
解这个方程,得,
经检验,是所列方程的根,
所以小刚跑步的平均速度为150米/分.
(2)由(1)得小刚跑步的平均速度为150米/分,
则小刚跑步所用时间为(分),
骑自行车所用时间为(分),
在家取作业本和取自行车共用了3分,
所以小刚从开始跑步回家到赶回学校需要(分).
因为,
所以小刚不能在上课前赶回学校.
【点睛】
本题考查路程问题的分式方程,解题关键是明确题意,列出分式方程求解.
25.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.
(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
【分析】
(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.
(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.
【解析】
(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,
根据题意得:,
解得:x=3,
经检验x=3是原方程的解,
所以3+2=5,
答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;
(2)设建A摊位a个,则建B摊位(90﹣a)个,
由题意得:90﹣a≥3a,
解得a≤22.5,
∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,
∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,
此时最大费用为:22×40×5+30×(90﹣22)×3=10520,
答:建造这90个摊位的最大费用是10520元.
26.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:
(1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?
【分析】
(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,根据数量=总价÷单价结合用700元购进A种书包的个数是用450元购进B种书包个数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设该商场购进m个A种书包,则购进(2m+5)个B种书包,根据购进A,B两种书包的总费用不超过5450元且A种书包不少于18个,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案;
(3)设销售利润为w元,根据总利润=销售每个书包的利润×销售数量,即可得出w关于m的函数关系式,利用一次函数的性质可得出获得利润最大的进货方案,设赠送的书包中B种书包有a个,样品中B种书包有b个,则赠送的书包中A种书包有(5﹣a)个,样品中A种书包有(4﹣b)个,根据利润=销售收入﹣成本,即可得出关于a,b的二元一次方程,结合a,b,(5﹣a),(4﹣b)均为正整数,即可求出结论.
【解析】
(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,
依题意,得:2,
解得:x=70,
经检验,x=70是原方程的解,且符合题意,
∴x+20=90.
答:每个A种书包的进价为70元,每个B种书包的进价为90元.
(2)设该商场购进m个A种书包,则购进(2m+5)个B种书包,
依题意,得:,
解得:18≤m≤20.
又∵m为正整数,
∴m可以为18,19,20,
∴该商场有3种进货方案,方案1:购买18个A种书包,41个B种书包;方案2:购买19个A种书包,43个B种书包;方案3:购买20个A种书包,45个B种书包.
(3)设销售利润为w元,则w=(90﹣70)m+(130﹣90)(2m+5)=100m+200.
∵k=100>0,
∴w随m的增大而增大,
∴当m=20时,w取得最大值,此时2m+5=45.
设赠送的书包中B种书包有a个,样品中B种书包有b个,则赠送的书包中A种书包有(5﹣a)个,样品中A种书包有(4﹣b)个,
依题意,得:90×[20﹣(5﹣a)﹣(4﹣b)]+0.5×90(4﹣b)+130(45﹣a﹣b)+0.5×130b﹣70×20﹣90×45=1370,
∴b=10﹣2a.
∵a,b,(5﹣a),(4﹣b)均为正整数,
∴.
答:赠送的书包中B种书包有4个,样品中B种书包有2个.
相关试卷
这是一份中考数学二轮复习重难点复习题型08 函数的实际应用 类型四 抛物线型问题(专题训练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点复习题型08函数的实际应用类型四抛物线型问题专题训练解析版doc、中考数学二轮复习重难点复习题型08函数的实际应用类型四抛物线型问题专题训练原卷版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份中考数学二轮复习重难点复习题型08 函数的实际应用 类型三 利润最值问题(专题训练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点复习题型08函数的实际应用类型三利润最值问题专题训练解析版doc、中考数学二轮复习重难点复习题型08函数的实际应用类型三利润最值问题专题训练原卷版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份中考数学二轮复习重难点复习题型08 函数的实际应用 类型二 阶梯费用及行程类问题(专题训练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点复习题型08函数的实际应用类型二阶梯费用及行程类问题专题训练解析版doc、中考数学二轮复习重难点复习题型08函数的实际应用类型二阶梯费用及行程类问题专题训练原卷版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。