![河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷第1页](http://img-preview.51jiaoxi.com/3/3/14316240/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷第2页](http://img-preview.51jiaoxi.com/3/3/14316240/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷第3页](http://img-preview.51jiaoxi.com/3/3/14316240/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷
展开
这是一份河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022—2023学年下期期中联考 高二数学参考答案 B卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案BADBBCCCADDB1.【答案】B【解析】,则.故选B.2.【答案】A【解析】买两本,有3种方案;买三本,有1种方案,因此共有方案3+1=4(种).故选A.3.【答案】D【解析】因为P(AB)=,P(A)=,所以P(B|A)===.故选D.4.【答案】B【解析】由题意,所以,所以.故选B.5.【答案】B【解析】由题可知,,则,∴,又,∴函数的图象在点处的切线方程为.故选B.6.【答案】C【解析】,令,得,当,,为减函数,当,,为增函数,则故选C.7.【答案】C【解析】从8个车位里选择5个相邻的车位,共有4种方式,选一种方式将5辆车相邻停放,有种方式,则不同的泊车方案有种,故选C.8.【答案】C【解析】,的展开式的通项公式为,所以展开式中项的系数是,展开式中项的系数是,所以,解得,故选C.9.【答案】A【解析】设,则,所以在上单调递减,又,由,即,所以,所以,故选A.10.【答案】D【解析】在同一坐标系中作出的图像,如图所示:若有两个极值点,则或.故选D.11.【答案】D【解析】由题意,5名实习教师的分配方案为,先将5名实习教师分组,有种,再将分好组的教师分配给3个班级,有种,其中不去甲班则不同的分配方案有种.故选D.12.【答案】B【解析】令,则,则在上单调递增,则,即,即;令,则,则在上单调递减,则,即,即;故,即.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.【答案】64【解析】因为4科老师布置了作业,在同一时刻每个学生做作业的情况有4种可能,所以3名学生都做作业的可能情况4×4×4=64种.故答案为64.14.【答案】e【解析】由.令,解得.当x变化时,与的变化情况如下表:+0-单调递增单调递减因此,极大值点为.15.【答案】50【解析】设三位数的回文数为ABA,A有1到9,共9种可能,即1B1、2B2、3B3…其中奇数共5种可能,即1B1,3B3,5B5,7B7,9B9;B有0到9共10种可能,即A0A、A1A、A2A、A3A、…符合题意的有5×10=50个.16.【答案】【解析】由,,所以,①若,,符合题意;②若,令,则在恒成立,∴在单调递增,又,,,∴由,得;若在恒成立,则可化为,令,,在单调递减,单调递增,∴,即有.综上:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)先排甲、乙,再排其余6人,共有(种)排法.························5分(2)先排4名男生有种方法,再将4名女生插空,有种方法,故共有(种)排法.······························································10分18.【解析】(1)令,得;令,得,所以.··········································6分(2)对原式两边求导得:令,得;即·································································12分19.【解析】(1)由题意可知X的所有可能取值为1,2,3,则,,, 则X的分布列为X123P 所以E(X)=1×+2×+3×=, ,····································6分(2)设乙答对的题数为Y,则Y所有可能的取值为0,1,2,3, 由题意可知Y~B,则E(Y)=3×=,D(Y)=3××=.因为E(X)=E(Y),D(X)<D(Y),所以甲、乙的数学期望相等;甲的方差小,甲比较稳定,所以甲同学当选成功的可能性更大.··························································12分20.【解析】(1)根据题意可知,将分别代入两曲线方程得到,.两个函数的导函数分别是,又,,则,解得,,.······································································6分(2)要使抛物线上的点M到直线的距离最短,则抛物线在点M处的切线斜率应该与直线相同,则,解得,又因为点M在抛物线上,解得.所以最短距离即的最小值为点M到直线的距离,代入点到直线的距离公式得.即最短距离为.·············································································12分21.【解析】(1)若在上的单调递减,则在上恒成立,化简得,易知函数在上递增,因此,故·······························································································4分(2)函数,.当时,由得,.·············6分是极小值,所以只要,即.································7分令,则,在内单增.因为,所以当时,;当时,.所以实数的值是.··················································9分当时,.为上的减函数,而,,所以有且只有一个零点.····································································11分综上实数的值是或.············································································12分22.【解析】(1)的定义域为,·························1分对于二次方程,有.当时,恒成立,在上单调递减.·······························2分当时,方程有两根,若,因为在上,所以在上单调递增;因为在上,所以在上单调递减;············4分若,因为在与上,所以在与上单调递减,因为在上,所以在上单调递增.·······················································5分(2)证明,即证,因为,所以.····································································6分当时,不等式显然成立.···········································7分当时,因为,所以只需证,即证.···················································································9分令,则,由得;由,得.所以在上为增函数,在上为减函数,所以.,则,易知在上为减函数,在上为增函数,所以,···············································································11分所以恒成立,即.·······································12分
相关试卷
这是一份河南省顶尖名校联盟2022-2023学年高二下学期5月期中联考数学试题(Word版附解析),共21页。试卷主要包含了本卷主要考查内容, 有一组样本数据等内容,欢迎下载使用。
这是一份河南豫南名校2022-2023学年高二上学期期中联考数学试题及参考答案,共4页。
这是一份河南豫南名校2022-2023学年高一上学期期中联考数学试题及参考答案,共5页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)