搜索
    上传资料 赚现金
    英语朗读宝

    河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷

    河南名校联盟2022-2023年高二下学期期中联考数学参考答案  B卷第1页
    河南名校联盟2022-2023年高二下学期期中联考数学参考答案  B卷第2页
    河南名校联盟2022-2023年高二下学期期中联考数学参考答案  B卷第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷

    展开

    这是一份河南名校联盟2022-2023年高二下学期期中联考数学参考答案 B卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    20222023学年下期期中联考        高二数学参考答案     B一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案BADBBCCCADDB1【答案】B【解析】.故选B.2.【答案】A【解析】买两本,有3种方案;买三本,有1种方案,因此共有方案314()故选A.3【答案】D【解析】因为P(AB)P(A),所以P(B|A).故选D.4【答案】B【解析】由题意,所以,所以.故选B.5【答案】B【解析】由题可知,,则,又函数的图象在点处的切线方程为.故选B.6【答案】C【解析】,令,当为减函数,当为增函数,故选C.7【答案】C【解析】8个车位里选择5个相邻的车位,共有4种方式,选一种方式5辆车相邻停放,有种方式,则不同的泊车方案有故选C.8.【答案】C【解析】的展开式的通项公式为所以展开式中项的系数是展开式中项的系数是所以,解得故选C.9【答案】A【解析】,则所以上单调递减,又,即,所以所以故选A.10【答案】D【解析】在同一坐标系中作出的图,如图所示:若有两个极值点,则.故选D.11.【答案】D【解析】由题意,5名实习教师的分配方案为,先将5名实习教师分组,有种,再将分好组的教师分配给3个班级,有种,其中不去甲班则不同的分配方案有.故选D.12.【答案】B【解析】,则,则上单调递增,则,即,即;令,则,则上单调递减,则,即,即,即.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13【答案】64【解析】因为4科老师布置了作业,在同一时刻每个学生做作业的情况有4种可能,所以3名学生都做作业的可能情况4×4×4=64种.故答案为64.14【答案】e【解析】.令,解得.当x变化时,的变化情况如下表:0单调递增单调递减因此,极大值.15【答案】50【解析】三位数的回文数为ABAA199种可能,即1B12B23B3…其中数共5种可能,即1B13B35B57B79B9B0910种可能,即A0AA1AA2AA3A符合题意的有5×10=50.16【答案】【解析】所以符合题意;,令恒成立,单调递增,,得恒成立,化为单调递减,单调递增,,即有综上.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】1先排甲、乙,再排其余6人,共有(种)排法.························52先排4名男生有种方法,再将4名女生插空,有种方法,故共有(种)排法.······························································1018.【解析】1)令,得,所以.··········································62对原式两边求导得:,得·································································1219.【解析】1)由题意可知X的所有可能取值为1,2,3,则 X的分布列为X123P 所以E(X) ····································62设乙答对的题数为Y,则Y所有可能的取值为0,1,2,3 由题意可知YBE(Y)D(Y)×.因为E(X)E(Y)D(X)<D(Y)所以甲、乙的数学期望相等;甲的方差小,甲比较稳定,所以甲同学当选成功的可能性更大.··························································1220.【解析】1)根据题意可知,分别代入两曲线方程得到两个函数的导函数分别是,则解得······································································62)要使抛物线上的点M到直线的距离最短,则抛物线在点M处的切线斜率应该与直线相同,则解得,又因为点M在抛物线上,解得所以最短距离即的最小值为点M到直线的距离,代入点到直线的距离公式得即最短距离为·············································································1221.【解析】1的单调递减,上恒成立,化简,易知函数上递增,因此·······························································································42函数.时,由得,.·············6是极小值,所以只要,即.································7,则内单增.因为,所以当时,时,.所以实数的值是.··················································9时,.上的减函数,而所以有且只有一个零点.····································································11综上实数的值是.············································································1222.【解析】1的定义域为·························1对于二次方程,有时,恒成立,上单调递减.·······························2时,方程有两根因为所以上单调递增;因为所以上单调递减············4因为所以单调递减因为所以上单调递增.·······················································52)证,即证因为,所以····································································6时,不等式显然成立.···········································7时,因为所以只需证即证···················································································9,则;由,得.所以上为增函数,在上为减函数,所以,则,易知上为减函数,在上为增函数,所以···············································································11所以恒成立,即·······································12 

    相关试卷

    河南省顶尖名校联盟2022-2023学年高二下学期5月期中联考数学试题(Word版附解析):

    这是一份河南省顶尖名校联盟2022-2023学年高二下学期5月期中联考数学试题(Word版附解析),共21页。试卷主要包含了本卷主要考查内容, 有一组样本数据等内容,欢迎下载使用。

    河南豫南名校2022-2023学年高二上学期期中联考数学试题及参考答案:

    这是一份河南豫南名校2022-2023学年高二上学期期中联考数学试题及参考答案,共4页。

    河南豫南名校2022-2023学年高一上学期期中联考数学试题及参考答案:

    这是一份河南豫南名校2022-2023学年高一上学期期中联考数学试题及参考答案,共5页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map