开学活动
搜索
    上传资料 赚现金

    安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷(含答案)

    安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷(含答案)第1页
    安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷(含答案)第2页
    安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷(含答案)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷(含答案)

    展开

    这是一份安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷(含答案),共15页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    安徽省马鞍山市、滁州市2023届高三下学期第二次教学质量监测(二模)数学试卷学校:___________姓名:___________班级:___________考号:___________
    一、选择题1设集合,则(   )A.     B.     C.     D.2,则在复平面内对应的点所在象限为(   )A.第一象限     B.第二象限 C.第三象限     D.第四象限3在下列区间中,函数单调递减的区间是(   )A.     B.     C.     D.4风筝由中国古代劳动人民发明于东周春秋时期,距今已2000多年.龙被视为中华古老文明的象征,大型龙类风筝放飞场面壮观,气势磅礡,因而广受喜爱.某团队耗时4个多月做出一长达200重约25公斤,龙身共有180鳞片的巨龙风筝.制作过程中,风筝骨架可采用竹子制作,但竹子易断,还有一种耐用的碳杆材质也可做骨架,但它比竹质的成本高.最终团队决定骨架材质按图中规律排列(即相邻两碳质骨架之间的竹质骨架个数成等差数列).则该龙身中竹质骨架个数为(   )A.161     B.162     C.163     D.164
    5如图是下列某个函数在区间的大致图象,则该函数是(  )A.     B.C.     D.6如图,在正四棱台中,,且各顶点都在同一球面上,则该球体的表面积为(   )A.     B.     C.     D.7已知,a,b,c的大小关系为(   )A.     B. C.     D.8a,b,c均为正数,且满足,则的最小值是(   )A.6     B.     C.     D.二、多项选择题9已知A,B为两个随机事件,且(   )A.B.A,B为互斥事件,则C.,则A,B为相互独立事件D.A,B为相互独立事件,则10已知抛物线的焦点为F,点P在准线上,过点FPF的垂线且与拗物线交于A,B两点,则(   )A.最小值为2B.,则C.,则D.若点P不在x轴上,则11已知函数及其导函数的定义域均为R,记,若,均为奇函数,则(   )A.      B.C.     D.12在平面直角坐标系Oxy中,为等腰三角形,顶角,点AB的中点,记的面积,则(   )A. B.S的最大值为6C.的最大值为6D.B的轨迹方程是三、填空题13展开式中的常数项为__________.14已知椭圆x轴正半轴交于点A,与y轴正半轴交于点B,点F是椭圆的一个焦点,若是等腰三角形,则的值为__________.15已知平面向量,满足的最大值为__________.16如图,正方体的棱长为2,点E,F在棱AB上,点H,G在棱CD上,点,在棱上,点,在棱上,,则六面体的体积为__________.四、解答题17已知等差数列的前n项和为,若,且,,成等比数列.1)求数列的通项公式;2)设,求数列的前n项和.18中,角A,B,C所对的边分别为a,b,c,且.1)求2)已知,求的面积.19大气污染物(大气中直径小于或等于的颗粒物)的浓度超过一定的限度会影响人的身体健康.为了研究的浓度是否受到汽车流量等因素的影响,研究人员选择了24个社会经济发展水平相近的城市,在每个城市选择一个交通点建立监测点,统计每个监测点24内过往的汽车流量(单位:千辆),同时在低空相同的高度测定每个监测点空气中的平均浓度(单位:),得到的数据如下表:城市编号汽车流量浓度城市编号汽车流量浓度11.3066111.8213521.4476121.439930.7821130.923541.65170141.445851.75156151.102961.75120161.8414071.2072171.114381.51120181.656991.20100191.5387101.47129200.91451)根据上表,若内过往的汽车流量大于等于1500辆属于车流量大,大于等于75属于空气污染.请结合表中的数据,依据小概率值的独立性检验,能否认为车流量大小与空气污染有关联?2)设浓度为y,汽车流量为x.根据这些数据建立浓度关于汽车流量的线性回归模型,并求出对应的经验回归方程(系数精确到0.01.0.1000.0500.0102.7063.8416.635附:.在经验回归方程中,.20如图,已知四棱锥中,平面平面ABCD,底面ABCD是直角梯形,.1)求证:2)若平面平面PBC,且中,AD边上的高为3,求AD的长.21已知双曲线的焦距为,离心率.1)求双曲线C的方程;2)设P,Q为双曲线C上异于点的两动点,记直线MP,MQ的斜率分别为,求证:直线PQ过定点.22已知函数.1)求函数的零点;2)证明:对于任意的正实数k,存在,当时,恒有.
    参考答案1答案:D解析:由, , 所以.2答案:C解析:, ,所以 对应点为, 在第三象限. 故选:C.3答案:B解析:由 , ,所以 的减区间是 , ,只有选项B的区间,故选:B.4答案:B解析:设有n 个碳质骨架, ,由已知可得,如果只有个碳质骨架, 则骨架总数少于 180 ,所以,所以, , 解得,所以共有碳质骨架 18 个,故竹质骨架有162故选:B.5答案:A解析:对B, , , 但由图象知, 故可 排除B,C, 因为 , 而由函数图象知函数一个零点在 上,而排除C;D, , 而由函数图象可知, 故可排除D.故选: A.6答案:D解析:如图所示的正四棱台  取上 下两个底面的中心M,N, 连接MN,,AN, 过点 作底面的垂线与AN 相交于点E,因为四棱台 为正四棱台,所以外接球的球心一定在直线MN,MN 上取一点 O为球心, 连接,, , ,因为,所以,,所以为正方形, O必在MN延长线上, , , , , 解得, 所以, 故选: D.7答案:B解析:8答案:C解析:,因为a,b,c 均为正数,所以当且仅当 时取等号, 时取等号,故选: C.9答案: BCD解析:根据题意, 依次分析选项:对于A ,当AB 为互斥事件时, A错误;对于B ,若AB 为互斥事件,即事件AB 会同时发生,则 B正确;对于C, ,, 则有, A,B为相互 独立事件,C 正确;对于D A,B 为相互独立事件,则D正确;故选: BCD.10答案: ABC解析:11答案: BD解析:12答案: ABD解析:由AB的中点,,则整理得:,则A轨迹是圆心为,半径为2的圆(去掉与x轴交点),如下图,由圆的对称性,不妨令A在轨迹圆的上半部分,即,则所以,则所以A正确;S的最大值为6B正确;由下图知:,所以无最大值,C错误;,则.代入A轨迹得所以B轨迹为D正确;故选:ABD.13答案:解析:因为   ,解得 所以展开式中常数项为.14答案:解析:由题意可知:, 因为, 所以, 因为 是等腰三角形,所以由椭圆的性质可知F是椭圆的下焦点, 所以故答案为:.15答案:20解析:16答案:解析:取, 连接MH, ,,, 如图,所求几何体可以看作正方体去掉 4 个体积相同的 三棱柱 (如图中三棱柱) 再去掉四个五面体(如图中 ), 五面体可分割为一个四棱锥与一个三 棱锥 ,因为四棱锥 所以,故答案为:.17答案:(1)(2)解析:(1)设数列的公差为d,由,,成等比数列,,解得-1不合题意,所以,即2)由(1)得所以所以.18答案:(1)(2)解析:(1)由题设得由余弦定理,整理得,所以.2)由(1)知,由余弦定理得,解得的面积为.19答案:(1) 认为车流量大小与空气污染有关联(2)解析:(1)由题知,列二联表,如下图 汽车流量大于等于1500汽车流量小于1500合计大于等于757411小于75189合计81220依据小概率值的独立性检验,可以认为车流量大小与空气污染有关联.2)由题知,浓度关于汽车流量的经验回归方程为.20答案:(1)见解析(2)解析:(1)设线段AC中点为E,连接BEPE,又,所以平面PBE平面PBE,所以.2)过点垂直直线AD于点O,则因为平面平面ABCD,平面平面平面PAD,所以平面ABCD连接OC,由,易知,所以四边形ABCO是菱形,因为,所以四边形ABCO是正方形,且OA,OC,OP两两互相垂直,O为空间直角坐标系原点,分别以OCOAOP方向为轴正半轴,轴正半轴,轴正半轴,建立如图空间直角坐标系.,则设平面PBD的法向量,则,得;不妨取,则,同理可得平面PBC的一个法向量由平面平面PBC,所以,即.21答案:(1) (2)解析:(1)由题意知,解得所以双曲线C的方程为.2)由题意可知直线PQ斜率存在,设其方程为,与联立,,设代入上式并整理得,故.时,直线PQ方程为过定点时,直线PQ方程为过点M与题意矛盾.综上,直线PQ过定点.22答案:(1) 函数的零点为1(2)见解析解析:(1)由题,,定义域为因为,所以函数在区间上单调递减.,故函数的零点为1.2)由(1)可知时,,即因此,进而.注意到,当时,等价于等价于于是,对于任意的正实数,取,则当时,有,即证.
     

    相关试卷

    安徽省马鞍山市2023届高三下学期第二次教学质量监测(二模)数学:

    这是一份安徽省马鞍山市2023届高三下学期第二次教学质量监测(二模)数学,共4页。

    安徽省马鞍山市、滁州市2023年高三下学期第二次教学质量监测数学:

    这是一份安徽省马鞍山市、滁州市2023年高三下学期第二次教学质量监测数学,共5页。

    2023届安徽省马鞍山市、滁州市高三下学期第二次教学质量监测试题(二模) 数学 PDF版:

    这是一份2023届安徽省马鞍山市、滁州市高三下学期第二次教学质量监测试题(二模) 数学 PDF版,文件包含马鞍山市滁州市2023年高三第二次教学质量监测数学pdf、马鞍山市滁州市2023年高三第二次教学质量监测数学答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map