河南省实验中学2022-2023学年高一数学下学期期中考试试题(Word版附答案)
展开河南省实验中学2022-2023学年下期期中试卷
高一 数学
(时间:120分钟,满分:150分)
一、单选题(本大题共8小题,每小题5分,共40分。)
1.如果直线⊂平面,直线⊂平面,且∥,则与的位置关系为( )
A.共面 B.平行 C.异面 D.平行或异面
2.若复数满足,则在复平面内的共轭复数所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知,且,则向量在向量上的投影向量为( )
A. B. C. D.
4.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑.如故宫中和殿的屋顶为四角攒尖顶,它的主要部分的轮廓可近似看作一个正四棱锥,设正四棱锥的侧面等腰三角形的顶角为,则该正四棱锥的侧面积与底面积的比为( )
A. B. C. D.
5.如图,矩形是一个水平放置的平面图形的直观图,其中,,则原图形是( )
A.面积为的菱形
B.面积为的矩形
C.面积为的菱形
D.面积为的矩形
6.在中,角,,所对的边分别为,,,已知,为使此三角形有两个,则满足的条件是( )
A. B. C. D.
7.已知矩形的顶点都在球心为的球面上,,,且四棱锥的体积为,则球的表面积为( )
A. B. C. D.
8.圆的直径,弦,点在弦上,则的最小值是( )
A. B. C. D.
二、多选题(本大题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)
9.已知三个内角,,的对边分别是,,,则下列说法正确的是( )
A.若>,则
B.若,则为钝角三角形
C.若为锐角三角形,则
D.若,则为锐角三角形
10.已知为虚数单位,则以下四个说法中正确的是( )
A.2340 B.复数的虚部为﹣
C.若复数为纯虚数,则22 D.1•212
11.在锐角中,内角,,的对边分别为,,,,且,则下列结论正确的是( )
A. B. C. D.
12.点为所在平面内一点,满足,(其中,∈R)( )
A.当=时,直线过边的中点
B.若,且,则
C.若,时,与的面积之比为
D.若,且,则,满足22
三、填空题(本大题共4小题,每小题5分,共20分。)
13. 已知向量,若∥,则 .
14.设复数满足条件,那么的最大值为 .
15.已知与是单位向量,.若向量满足,则的取值范围是 .
16.在锐角中,内角,,所对应的边分别是,,,且,则的取值范围是 .
四、解答题(本大题共6小题,17题10分,其余各题12分,共70分)
17.已知向量,.
(1)设向量与的夹角为,求;
(2)若向量与向量垂直,求实数.
18.在中,角,,所对的边分别为,,,且满足.
(1)求角的大小.
(2)已知,的面积为,求边长的值.
19.在△中,点分别在边和边上,且,,交于点,设,.
(1)试用,表示;
(2)在边上有点,使得,求证:三点共线.
20.如图,已知四棱锥的底面为直角梯形,∥,∠,
⊥,⊥,且.是的中点.
(1)求证;
(2)是的中点,求证∥平面.
21.已知向量,,函数•.
(1)求函数的最小正周期和单调递减区间;
(2)在中,角的对边分别为,,,若,,求面积的最大值.
22.如图,在长方体中,分别为所在棱的中点,分别为,的中点,连接,,,,,.
(1)求证:平面∥平面;
(2)在线段上是否存在点,使得∥平面?若存在,求出点的位置;若不存在,请说出理由.
河南省实验中学2022-2023学年下期期中试卷答案(高一)
一、单选题(共8小题)
1-4 DACB 5-8 ACBD
二、多选题(共4小题)
9.ABC 10.AD 11.ACD 12.ABD
三、填空题(共4小题)
13. 14. 3 15. [2,2] 16. (1,2)
四.解答题(共6小题)
17.解:(1)已知向量,,
则,····················(3分)
所以,
即sinθ的值为;······················································(5分)
(2)已知向量与向量垂直,
则,················································(7分)
即,
又,,,
所以25m﹣10(1﹣m)﹣5=0,
即35m=15,
解得.····························································(10分)
18.解:(1)在△ABC中,由正弦定理得:sinAcosC﹣sinCsinA=0,···········(2分)
因为0<A<π,所以sinA>0,
从而cosC=sinC,······················································(3分)
又C∈(0,π),可得cosC≠0,
所以tanC,························································(5分)
所以C.·····························································(6分)
(2)在△ABC中,b=6,S△ABCabsinC6×a×sin6,··········(8分)
得a=4,·····························································(9分)
由余弦定理得:c2=a2+b2﹣2abcosC,即c2=62+42﹣2×6×4×cos28,······(11分)
所以c=2.························································(12分)
19.解:(1)设,由题意,·
所以,①,·························································(2分)
设,由,,②,·························································(4分)
由①、②得,,
所以,解得,·······································(6分)
所以;···················································(7分)
(2)证明:由,得,
所以,·········································(9分)
所以,······················································(10分)
因为与有公共点B,
所以B,P,F三点共线.···············································(12分)
20.证明:(1)根据题意,结合勾股定理易知在直角梯形ABCD中,AC⊥BC,且AC=BC=,
又PA⊥AB,PA⊥AC, PA=1 ∴PC=, PB=,
∴△PBC为直角三角形,················································(2分)
在Rt△PAB中,M为PB的中点,则AM.
在Rt△PBC中,M为PB的中点,则CM,
∴AM=CM.···························································(4分)
(2)连接DB交AC于F,
由相似三角形的性质易知∵DC,∴DF.·························(5分)
取PM中点G,连接DG,FM,则DG∥FM,······························(6分)
又DG⊄平面MAC,FM⊂平面AMC,
∴DG∥平面AMC,·····················································(7分)
连DN,GN,则GN∥MC,···············································(8分)
又GN⊄平面MAC,MC⊂平面AMC,
∴GN∥平面AMC,······················································(9分)
又GN∩DG=G,GN、DG⊂平面DNG,
∴平面DNG∥平面ACM,··············································(11分)
又DN⊂平面DNG,
∴DN∥平面ACM.······················································(12分)
21.解:(Ⅰ)f(x)•(cos(x),﹣sinx)•(sin(x),sinx)
=(cos(x)(sin(x)﹣sin2x
=(cosxsinx)2﹣sin2x(cos2x﹣sin2x)sinxcosx
cos2xsin2xsin(2x),········································(3分)
∴函数的周期T,··············································(4分)
由2kπ2x2kπ,k∈Z,即kπx≤kπ,k∈Z,
即函数的单调递减区间为[kπ,kπ],k∈Z.··························(6分)
(Ⅱ)∵f(C),∴sin(2C),∴sin(2C)=﹣1,
即2C2kπ,得C=kπ,k∈Z,
∵0<C<π,∴当k=1时,C,······································(8分)
由余弦定理得c2=a2+b2﹣2abcosC,
∵c=2,∴12=a2+b2﹣2abcosa2+b2+ab≥2ab+ab=3ab,
即ab≤4,····························································(10分)
则三角形的面积SabsinC,当且仅当a=b时取等号,
即三角形的面积的最大值为.·········································(12分)
22.解:(1)证明:连接A1C1,BC1,∵E,F,G分别为所在棱的中点,
∴A1C1∥GF,EF∥BC1,∵AD1∥BC1,∴AD1∥EF,
又AD1⊂平面ACQ,EF⊄平面ACQ,∴EF∥平面ACQ,·····················(2分)
同理可证GF∥平面ACQ,又GF∩EF=F,∴平面EFG∥平面ACQ;·········(4分)
(2)线段CD上存在点P,当DPDC时,满足DQ∥平面D1PH,··········(5分)
证明如下;如右图,取CD上靠近D点的三等分点为P,连接PD1,连接PH并延长交AB于点M,
连接D1M,则平面D1PH与平面D1PM为同一平面,
取线段D1M的中点为N,连接QN,NP,··································(7分)
由平行关系及H为AC的中点,得△AMH≌△CPH,则AMABCD,
因为Q,N分别为AD1,MD1的中点,所以QNAMABCD,且QN∥AM,
又DP∥AM且DPDC,即QN∥DP且QN=DP,·························(9分)
所以四边形QDPN为平行四边形,故QD∥NP,···························(10分)
又QD⊄平面D1PH,NP⊂平面D1PH,故QD∥平面D1PH.·················(12分)
河南省实验中学2023-2024学年高一上学期期中数学试题(Word版附答案): 这是一份河南省实验中学2023-2024学年高一上学期期中数学试题(Word版附答案),共11页。
河南省实验中学2022-2023学年高一数学上学期期中试题(Word版附解析): 这是一份河南省实验中学2022-2023学年高一数学上学期期中试题(Word版附解析),共3页。试卷主要包含了 下列命题是真命题的是, 已知函数f, 已知函数,则不等式的解集为, 下列选项中正确有等内容,欢迎下载使用。
四川省绵阳市南山中学实验学校2022-2023学年高一数学下学期期中考试试题(Word版附解析): 这是一份四川省绵阳市南山中学实验学校2022-2023学年高一数学下学期期中考试试题(Word版附解析),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。