|试卷下载
搜索
    上传资料 赚现金
    2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析
    立即下载
    加入资料篮
    2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析01
    2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析02
    2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析

    展开
    这是一份2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023届河南省普高联考高三下学期测评(四)数学(理)试题

     

    一、单选题

    1.已知集合,则(    

    A B C D

    【答案】B

    【分析】根据二次不等式解法求出集合B,求出,根据元素和集合的关系即可逐项判断.

    【详解】由题可知,则,依据选项可知B正确.

    故选:B

    2.若复数z的共轭复数为,且,则z的虚部为(    

    A B C D2

    【答案】D

    【分析】先根据条件求出复数,然后可得虚部.

    【详解】设复数a,则

    ,解得,则,故z的虚部为2.

    故选:D

    3.已知等比数列的前n项和为,且,则    

    A B5 C D

    【答案】B

    【分析】先根据的定义依次求出,再由等比数列的定义即可得到关于的关系式,解之即可得出答案.

    【详解】因为

    时,

    时,,则

    时,,则

    因为是等比数列,所以,则

    所以,解得

    .

    故选:B.

    4.塔是一种在亚洲常见的,有着特定的形式和风格的中国传统建筑.最初是供奉或收藏佛骨、佛像、佛经、僧人遗体等的高耸型点式建筑,称佛塔.如图,为测量某塔的总高度AB,选取与塔底B在同一水平面内的两个测量基点CD,现测得米,在C点测得塔顶A的仰角为60°,则塔的总高度约为(    )(参考数据:

    A13 B24 C39 D45

    【答案】C

    【分析】Rt△ABC根据ACB的正切得ABBC的关系,在BCD中利用正弦定理列式即可求解.

    【详解】,则

    中,,由正弦定理得

    因为

    代入数据,解得(米),

    故选:C

    5.函数的大致图象是(    

    A B

    C D

    【答案】A

    【分析】先判断函数的奇偶性即可排除选项;再利用特殊值即可排除选项,进而求解.

    【详解】函数的定义域为

    所以是奇函数,图象关于原点对称,排除选项,

    只需研究的图象,当时,,则,排除选项.

    故选:

    6.某学校为落实双减政策,在课后服务时间开展了绘画、书法、围棋、舞蹈、武术五项兴趣拓展活动,小明计划从这五项活动中选择三项,则书法、舞蹈这两项活动至多有一项被选中的概率为(    

    A B C D

    【答案】B

    【分析】方法一:根据排列组合结合分类加法法则得出答案;

    方法二:先求出书法、舞蹈这两项活动都被选中的概率,即可根据对立事件的概率求法得出答案.

    【详解】方法一:书法、舞蹈这两项活动至多有一项被选中分两种情况:

    都没有被选中,有种情况;两项活动只有一项被选中,有种情况,

    则所求概率为,故选B

    方法二:书法、舞蹈这两项活动至多有一项被选中的对立事件是书法、舞蹈这两项活动都被选中,故所求概率为

    故选:B

    7.记不等式组的解集为D,现有下面四个命题:

    其中真命题的个数是(    

    A1 B2 C3 D4

    【答案】C

    【分析】作出不等式组所表示的区域,再逐项的作出对应直线,观察所作直线与可行域的关系,再利用存在命题与全称命题的概念进行判断即可求解.

    【详解】不等式组的解集D表示的可行域如图中阴影部分所示,依据图(1)知命题为真命题,依据图(2)知命题为真命题,

    依据图(3)知命题为假命题,依据图(4)知命题为真命题.所以真命题有3个,

    故选:C

    8.已知抛物线的焦点为F,过点F的直线与抛物线交于点AB,与抛物线的准线交于点M,且点A位于第一象限,F恰好为AM的中点,,则    

    A B C D

    【答案】A

    【分析】过点AB分别作准线的垂线,垂足分别为NE,根据抛物线的定义,又F恰好为AM的中点,可得到比例,进一步推导得到的值.

    【详解】如图,

    过点AB分别作准线的垂线,垂足分别为NE,根据抛物线的定义得,因为FAM的中点,所以,又,所以,所以.

    故选:A

    9.任意写出一个正整数,并且按照以下的规律进行变换:如果是个奇数,则下一步变成,如果是个偶数,则下一步变成,无论是怎样一个数字,最终必进入循环圈,这就是数学史上著名的冰雹猜想.它可以表示为数列为正整数),,若,则的所有可能取值之和为(    

    A B C D

    【答案】B

    【分析】列举出的可能情况,可得出的所有可能取值,相加即可得解.

    【详解】由题意,的可能情况有:

    所以,的可能取值集合为的所有可能取值之和为.

    故选:B.

    10.在菱形ABCD中,ACBD的交点为G,点MN分别在线段ADCD上,且,将沿MN折叠到,使,则三棱锥的外接球的表面积为(    

    A B C D

    【答案】B

    【分析】MNBD的交点为H,连接,证明平面ABC.设的外接圆圆心为的外接圆圆心为,过分别作平面ABC,平面的垂线,设两垂线交于点O,则O是三棱锥外接球的球心,先求出,再求出三棱锥的外接球的半径即得解.

    【详解】如图所示,因为

    所以,设MNBD的交点为H,连接

    因为,所以,则

    所以.又,则,则.又平面ABC,故平面ABC

    的外接圆圆心为的外接圆圆心为,过分别作平面ABC,平面的垂线,设两垂线交于点O,则O是三棱锥外接球的球心,且四边形为矩形.设的外接圆半径为,在中,由,解得,同理可得的外接圆半径,所以.设三棱锥的外接球半径为R,则,则三棱锥的外接球的表面积.

    故选:B

    11.设双曲线的左、右焦点分别为B为双曲线E上在第一象限内的点,线段与双曲线E相交于另一点AAB的中点为M,且,若,则双曲线E的离心率为(    

    A B2 C D

    【答案】D

    【分析】连结连接.,根据双曲线的定义可推得,即.进而在直角三角形中,根据勾股定理可得.结合已知条件,即可得出,从而得出离心率.

    【详解】

    如图,连接.

    因为MAB的中点,,所以

    因为,所以.

    又因为,所以

    因为MAB的中点,所以,则

    ,在中,

    中,

    ,整理可得,所以

    时,,则

    所以离心率为

    故选:D

    12.已知,其中e为自然对数的底数,则(    

    A B

    C D

    【答案】D

    【分析】构造函数,利用导数判断其单调性即可判断的大小;,可构造函数判断的大小,构造函数判断的大小,从而可判断的大小.

    【详解】

    时,,则上单调递增,

    ,所以当时,,又,所以上恒成立,又,所以,即

    ,则

    时,,所以上单调递减,

    所以当时,,即

    ,则上单调递减,

    所以当时,,即

    所以上恒成立.

    ,则,所以

    综上所述,

    故选:D

    【点睛】构造函数比较大小主要方法有:1.通过找中间值比较大小,要比较的两个或者三个数之间没有明显的联系,这个时候我们就可以通过引入一个常数作为过渡变量,把要比较的数和中间变量比较大小,从而找到他们之间的大小;2.通过构造函数比较大小,要比较大小的几个数之间可以看成某个函数对应的函数值,我们只要构造出函数,然后找到这个函数的单调性,就可以通过自变量的大小关系,进而找到要比较的数的大小关系.有些时候构造的函数还需要通过放缩法进一步缩小范围.

     

    二、填空题

    13.二项式的展开式中的系数为________

    【答案】90

    【分析】由二项式展开式通项公式可求.

    【详解】由题知,当时,,故的系数为90

    故答案为:90.

    14.如图,在矩形ABCD中,ACBD的交点为MN为边AB上任意点(包含端点),则的最大值为________

    【答案】##

    【分析】以点A为坐标原点,的方向为x轴,y轴正方向建立平面直角坐标系,写出对应点的坐标,设,根据平面向量数量积的坐标运算即可求解.

    【详解】以点A为坐标原点,的方向为x轴,y轴正方向,建立平面直角坐标系,

    ,设

    所以,则

    因为,所以,即的最大值为

    故答案为:

    15.圆x轴交于AB两点(AB的左侧),点N满足,直线与圆M和点N的轨迹同时相切,则直线l的斜率为________

    【答案】

    【分析】求出AB坐标,设N(x,y),求出N的轨迹圆E的方程,作出图象,利用圆的公切线的几何性质即可求其斜率.

    【详解】对于圆,令,得,解得

    ,整理得

    则点N的轨迹是圆心为,半径为的圆.

    又圆M的方程为,则圆M的圆心为,半径为

    两圆相交,

    设直线l与圆M和点N轨迹圆E切点分别为CD

    连接CMDE,过MDE的垂线,垂足为点F,则四边形CDFM为矩形,

    则两圆公切线CD的斜率即为直线FM的斜率为

    故答案为:.

    16.先将函数的图象向左平移个单位长度,再将所得图象上所有点的横坐标变为原来的,纵坐标不变,所得图象与函数的图象关于x轴对称,若函数上恰有两个零点,且在上单调递增,则的取值范围是________

    【答案】

    【分析】先根据题目的要求平移伸缩对称变换得到的解析式,然后结合函数在上恰有两个零点以及在上单调递增,列出不等式组,即可求得本题答案.

    【详解】函数的图象向左平移个单位长度,得到的图象,

    再将图象上所有点的横坐标变为原来的,纵坐标不变,得到的图象,因为函数的图象与的图象关于x轴对称,

    所以

    因为,所以

    又因为恰有2个零点,且

    所以,解得

    ,得,令,得上单调递增,所以

    所以,又,解得

    综上所述,,故的取值范围是

    故答案为:

     

    三、解答题

    17.在中,角ABC的对边分别为abc,且

    (1)A

    (2)的面积为,点D在线段AC上,且,求BD的最小值.

    【答案】(1)

    (2).

     

    【分析】1)根据正弦定理,结合三角恒等变换化简可推得,即可得出答案;

    2)由已知可推得.中,由余弦定理可推得,然后根据基本不等式,即可得出BD的最小值.

    【详解】1)由正弦定理得

    ,则

    化简得

    ,所以,则

    因为,所以

    2)由(1)知,则的面积为,解得

    中,

    由余弦定理得

    当且仅当,即时等号成立,

    所以BD的最小值为

    18.如图,在四棱锥中,底面ABCD是平行四边形,,点M在底面ABCD上的射影为CD的中点OE为线段AD上的点(含端点)

    (1)E为线段AD的中点,证明:平面平面MAD

    (2),求二面角的余弦值.

    【答案】(1)证明见解析

    (2)

     

    【分析】(1)ADO中,利用勾股定理证明EDEO,再结合EDMO即可证明平面MOE,从而可证明平面平面MAD

    (2)连接OA,证明,以O为坐标原点,建立空间直角坐标系,利用空间向量即可求解二面角的余弦值.

    【详解】1平面ABCD平面ABCD

    O为线段CD的中点,E为线段AD的中点,

    ,由余弦定理得

    ,则

    平面MOE平面MOE

    平面MAD平面平面MAD

    2)连接OA,由(1)知当E为线段AD的中点时,

    AOD三点在以AD为直径的圆上,故

    故以O为原点,建立如图所示的空间直角坐标系,

    ,则

    ,则

    设平面MAD的法向量为,则解得

    ,则平面MAD的一个法向量为

    设平面MEO的法向量为,则解得

    ,则平面MEO的一个法向量为

    则二面角的余弦值为

    19.某公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,统计了近5年的年营销费用和年销售量,得到的散点图如图所示,对数据进行初步处理后,得到一些统计量的值如下表所示.

     

    表中.已知可以作为年销售量y关于年营销费用x的回归方程.

    (1)y关于x的回归方程;

    (2)若公司每件产品的销售利润为4元,固定成本为每年120万元,用所求的回归方程估计该公司每年投入多少营销费用,才能使得该产品一年的收益达到最大?(收益销售利润营销费用固定成本)

    参考数据:

    参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

    【答案】(1)

    (2)该公司每年投入351万元营销费用时,该产品一年的收益达到最大

     

    【分析】(1)根据题目要求可知,y关于x的回归方程为非线性的,设,可得,代入已知条件所给的数据,计算即可.(2)列出年收益与营销费用的关系式,通过求导来求得最值.

    【详解】1)由得,,令,则

    由表中数据可得,

    ,所以

    ,因为,所以

    故所求的回归方程为

    2)设年收益为W万元,则

    求导,得

    ,解得

    时,单调递增,当时,单调递减,

    因此,当W有最大值,即该公司每年投入351万元营销费用时,该产品一年的收益达到最大.

    20.已知椭圆的右焦点为F,离心率为,且点在椭圆上.

    (1)求椭圆C的标准方程;

    (2)过右焦点F且斜率不为0的直线l与椭圆C交于AB两点,线段AB的中点为Q,经过坐标原点O和点Q的直线m与椭圆C交于MN两点,求四边形AMBN的面积的取值范围.

    【答案】(1)

    (2)

     

    【分析】1)由题得到关于的方程,解方程即得解;

    2)设直线l的方程为,联立椭圆C的方程得到韦达定理,设线段AB的中点为,求出它的坐标,求出、点MN到直线l的距离,再化简求出即得解.

    【详解】1)设椭圆右焦点的坐标为,则,即

    ,则

    因为点在椭圆上,

    所以,即,解得

    ,所以椭圆C的标准方程为

    2)由(1)知,因为直线l的斜率不为0,所以可设直线l的方程为

    代入椭圆C的方程,消去x化简得

    ,则

    设线段AB的中点为,则,即,则直线m的方程为

    代入椭圆C的方程可得,不妨设

    MN到直线l的距离分别为

    则四边形AMBN的面积为

    因为点MN在直线l的两侧,所以

    因为,所以

    因此,四边形AMBN的面积的取值范围为

    21.已知函数

    (1)时,求在点处的切线方程;

    (2)时,,求实数m的取值范围.

    【答案】(1)

    (2)

     

    【分析】1)由导数法求切线;

    2)法一:对m分类讨论,由导数法研究函数单调性及符号即可判断,其中时,由作差法说明,将问题转化为判断的符号;

    法二:不等式等价为,由导数法研究图象性质,由数形结合判断范围.

    【详解】1)因为,所以

    因为,所以切线方程为,即

    2)方法一:i.

    ,可得

    ,则

    时,,所以单调递增,则

    时,,所以

    所以恒成立,符合题意;

    ii.

    时,,不合题意.

    iii.

    ,则

    时,,所以上单调递增,

    因为,所以存在,使得

    时,,则上单调递减,,不合题意.

    综上所述,m的取值范围为

    方法二:由题知当时,,即

    因为,所以

    ,因为,所以为周期函数,且周期为

    ,则

    所以当时,,则单调递增;

    时,,则单调递减.

    时,令,则,则单调递减,.

    时,直线与曲线相切,如图,

     

    根据图象可知,要使,只需,故实数m的取值范围为

    【点睛】恒成立问题,一般可通过分离参数法,转化为由导数法研究不含参部分的最值;或者对参数分类讨论,由导数法分别说明.

    22.在直角坐标系中,直线l的参数方程为其中t为参数,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为,其中为参数.

    (1)求直线l的普通方程和曲线C的直角坐标方程,并画出曲线C的简图(无需写出作图过程);

    (2)直线与曲线C相交于AB两点,且,求的值.

    【答案】(1),作图见解析;

    (2)

     

    【分析】1)消去参数,即可得出直线的普通方程.根据公式即可求得曲线C的直角坐标方程.然后根据方程作图即可;

    2)设点A位于第一象限,由图象集合已知条件可推出.,可求得.然后根据的范围,即可得出的值.

    【详解】1)将直线的参数方程消去t,得普通方程为

    曲线C的极坐标方程为,即

    ,所以曲线C的直角坐标方程为

    则曲线C的简图如图所示.

    2)不妨设点A位于第一象限,结合图形和直线可知,

    所以.

    ,所以

    ,所以

    23.已知函数的最小值为m

    (1)在直角坐标系中画出的图象,并求出m的值;

    (2)abc均为正数,且,求的最小值.

    【答案】(1)作图见解析,

    (2)3

     

    【分析】(1)写出f(x)解析式,按照一次函数图象画法即可画出图象,根据图象即可求出最小值m

    (2)利用基本不等式得,三式相加即可求得的最小值.

    【详解】1)由题知

    描点,连线得的图象如图所示.

    通过图象可知,当时,函数的最小值为,即

    2)由(1)

    三个式子相加得,当且仅当时等式成立,

    的最小值为3

     

    相关试卷

    2023届河南省开封市等2地学校高三下学期普高联考测评(六)数学(理)试题含解析: 这是一份2023届河南省开封市等2地学校高三下学期普高联考测评(六)数学(理)试题含解析,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023河南省普高联考高三下学期测评(六)数学(理)PDF版含解析: 这是一份2023河南省普高联考高三下学期测评(六)数学(理)PDF版含解析,文件包含河南省普高联考2022-2023学年高三下学期测评六理数答案和解析pdf、河南省普高联考2022-2023学年高三下学期测评六理数pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    2023届河南省洛阳市普高联考高三上学期测评(三)数学(理)试题含解析: 这是一份2023届河南省洛阳市普高联考高三上学期测评(三)数学(理)试题含解析,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023届河南省普高联考高三下学期测评(四)数学(理)试题含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map