- 单元复习【过知识】 第五章 传感器-2022-2023学年高二物理单元复习(人教版2019选修第二册) 课件 试卷 0 次下载
- 单元复习【过考点】 第一章 安培力与洛伦兹力-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册) 试卷 试卷 0 次下载
- 单元复习【过考点】 第三章 交变电流-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册) 试卷 试卷 0 次下载
- 单元复习【过考点】 第四章 电磁振荡与电磁波-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册) 试卷 试卷 0 次下载
- 单元复习【过考点】 第五章 传感器-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册) 试卷 试卷 0 次下载
单元复习【过考点】 第二章 电磁感应-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册)
展开单元复习【过考点】 第二章 电磁感应
班级 姓名
【电磁感应现象的理解和判断】
1.(2022·浙江嘉兴市月考)下列四幅演示实验图中,能正确表述该实验现象的是( )
A.图甲用磁体靠近轻质铝环A,A会靠近磁体
B.图乙断开开关S,触点C不会立即断开
C.图丙闭合开关S瞬间,电流表有示数,断开开关S瞬间,电流表没有示数
D.图丁铜盘靠惯性转动,手持磁体靠近铜盘,铜盘将加速转动
答案 B
2.如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ(0<θ<90°).在下列各过程中,一定能在轨道回路里产生感应电流的是( )
A.ab向右运动,同时使θ减小
B.使磁感应强度B减小,θ角同时也减小
C.ab向左运动,同时增大磁感应强度B
D.ab向右运动,同时增大磁感应强度B和θ角
答案 A
解析 设此时回路面积为S,据题意,穿过回路的磁通量Φ=BScos θ.ab向右运动,则S增大,θ减小,则cos θ增大,因此Φ增大,回路里一定能产生感应电流,A正确;B减小,θ减小,cos θ增大,Φ可能不变,回路里不一定能产生感应电流,B错误;ab向左运动,则S减小,B增大,Φ可能不变,回路里不一定能产生感应电流,C错误;ab向右运动,则S增大,B增大,θ增大,cos θ减小,Φ可能不变,回路里不一定能产生感应电流,D错误.
【探究感应电流方向】
3.(多选)某同学在“探究电磁感应的产生条件”的实验中,设计了如图所示的装置:线圈A通过电流表甲、高阻值的电阻R′、滑动变阻器R和开关S连接到干电池上,线圈B的两端接到另一个电流表乙上,两个电流表相同,零刻度居中.闭合开关后,当滑动变阻器R的滑片P不动时,甲、乙两个电流表指针的不同的位置如图所示,则( )
A.当滑片P较快地向左滑动时,甲表指针向右偏转
B.当滑片P较快地向左滑动时,乙表指针向左偏转
C.断开开关,待电路稳定后再迅速闭合开关,甲表指针向左偏转
D.断开开关,待电路稳定后再迅速闭合开关,乙表指针向左偏转
答案 ABD
解析 当滑片P较快地向左滑动时,滑动变阻器接入电路的电阻减小,闭合电路总电流变大,甲表指针向右偏转,穿过线圈的磁通量变大,由楞次定律可知乙表指针向左偏转,故A、B正确;断开开关,待电路稳定后再迅速闭合开关,总电流变大,甲表指针向右偏转,由楞次定律可知乙表指针向左偏转,故C错误,D正确.
【楞次定律】
4.(2020·江苏卷·3)如图所示,两匀强磁场的磁感应强度B1和B2大小相等、方向相反.金属圆环的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是( )
A.同时增大B1减小B2
B.同时减小B1增大B2
C.同时以相同的变化率增大B1和B2
D.同时以相同的变化率减小B1和B2
答案 B
解析 若同时增大B1减小B2,则穿过环向里的磁通量增大,根据楞次定律,感应电流产生的磁场方向向外,由安培定则,环中产生的感应电流是逆时针方向,故选项A错误;同理可推出,选项B正确,C、D错误.
5.如图所示,空间存在垂直纸面向里的磁场,磁场在竖直方向均匀分布,在水平方向非均匀分布,且关于竖直平面MN对称,绝缘轻线上端固定在M点,下端与一个粗细均匀的铜制圆环相连.现将圆环由P处无初速度释放,圆环第一次向右摆动最远能到达Q处(图中未画出).已知圆环始终在同一竖直平面内摆动,则在圆环从P摆向Q的过程中,下列说法正确的是( )
A.位置P与Q可能在同一高度
B.感应电流方向始终逆时针
C.感应电流方向先逆时针后顺时针
D.圆环整体所受安培力先做负功后做正功
答案 C
解析 圆环从P摆向Q的过程中,由于磁场在竖直方向均匀分布,在水平方向非均匀分布,导致环中磁通量变化,从而产生感应电流,产生焦耳热,则在整个运动过程中环的机械能会减少,因此Q不可能与P在同一高度,故A错误;根据楞次定律,环在向下摆的过程中,穿过环垂直向里的磁通量在增加,当向上摆的过程中,穿过环垂直向里的磁通量在减少,则感应电流方向先逆时针后顺时针,故B错误,C正确;安培力一直阻碍圆环与磁铁的相对运动,做负功,故D错误.
【楞次定律推论】
6.(2020·全国卷Ⅲ·14)如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环.圆环初始时静止.将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到( )
A.拨至M端或N端,圆环都向左运动
B.拨至M端或N端,圆环都向右运动
C.拨至M端时圆环向左运动,拨至N端时向右运动
D.拨至M端时圆环向右运动,拨至N端时向左运动
答案 B
解析 开关S由断开状态拨至连接状态,不论拨至M端还是N端,通过圆环的磁通量均增加,根据楞次定律(增离减靠)可知圆环会阻碍磁通量的增加,即向右运动,故选B.
7.如图所示,水平桌面上放有一个闭合铝环,在铝环轴线上方有一个条形磁体.当条形磁体沿轴线竖直向下迅速移动时,下列判断正确的是( )
A.铝环有收缩的趋势,对桌面的压力增大
B.铝环有收缩的趋势,对桌面的压力减小
C.铝环有扩张的趋势,对桌面的压力减小
D.铝环有扩张的趋势,对桌面的压力增大
答案 A
解析 根据楞次定律可知:当条形磁体沿轴线竖直向下迅速移动时,穿过闭合铝环的磁通量增加,因此铝环有收缩的趋势,同时有远离磁体的趋势,从而阻碍磁通量的增加,故增加了和桌面的挤压程度,从而使铝环对桌面的压力增大,选项A正确,B、C、D错误.
8.(多选)两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如图所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流,则( )
A.A可能带正电且转速减小
B.A可能带正电且转速增大
C.A可能带负电且转速减小
D.A可能带负电且转速增大
答案 BC
解析 若A带正电,顺时针转动产生顺时针方向的电流,A内磁场方向垂直纸面向里,当转速增大时,穿过B的磁通量增加,B中产生感应电流,根据楞次定律,感应电流的磁场方向与原磁场方向相反,即感应电流产生的磁场方向垂直纸面向外,故B中产生逆时针方向的电流,A错误,B正确; 若A带负电,顺时针转动产生逆时针方向的电流,A内磁场方向垂直纸面向外,当转速减小时,穿过B的磁通量减少,B中产生感应电流,根据楞次定律,感应电流的磁场方向与原磁场方向相同,即感应电流产生的磁场方向垂直纸面向外,故B中产生逆时针方向的电流,C正确,D错误.
【三定则一定律综合应用】
9.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,PQ、MN均处在竖直向下的匀强磁场中,当PQ在一外力的作用下运动时,MN向右运动,则PQ所做的运动可能是( )
A.向右加速运动 B.向左加速运动
C.向右减速运动 D.向左减速运动
答案 BC
解析 MN向右运动,说明MN受到向右的安培力,因为MN处的磁场垂直纸面向里MN中的感应电流方向为M→NL1中感应电流的磁场方向向上.若L2中磁场方向向上减弱PQ中电流方向为Q→P且减小向右减速运动;若L2中磁场方向向下增强PQ中电流方向为P→Q且增大向左加速运动.
【判断感应电动势的方向及变化情况】
10.(多选)(2018·全国卷Ⅲ·20)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧.导线PQ中通有正弦交流电i,i的变化如图(b)所示,规定从Q到P为电流正方向.导线框R中的感应电动势( )
A.在t=时为零
B.在t=时改变方向
C.在t=时最大,且沿顺时针方向
D.在t=T时最大,且沿顺时针方向
答案 AC
解析 在t=时,i-t图线斜率为0,即磁场变化率为0,由E==S知,E=0,A项正确;在t=和t=T时,i-t图线斜率的绝对值最大,在t=和t=T时感应电动势最大.在到之间,电流由Q向P减弱,导线在R处产生垂直纸面向里的磁场,且磁场减弱,由楞次定律知,R产生的感应电流的磁场方向也垂直纸面向里,即R中感应电动势沿顺时针方向,同理可判断在到之间,R中电动势也为顺时针方向,在T到T之间,R中电动势为逆时针方向,C项正确,B、D项错误.
【感应电动势、感应电流的计算】
11.(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示.一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示.则在t=0到t=t1的时间间隔内( )
A.圆环所受安培力的方向始终不变
B.圆环中的感应电流始终沿顺时针方向
C.圆环中的感应电流大小为
D.圆环中的感应电动势大小为
答案 BC
解析 在0~t0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力方向水平向左;在t0~t1时间内,磁感应强度反向增大,感应电流的方向仍为顺时针,圆环所受安培力方向水平向右,所以选项A错误,B正确;根据法拉第电磁感应定律得E==πr2·=,由R=ρ可得R=ρ,根据闭合电路欧姆定律可得I==,所以选项C正确,D错误.
【有效长度问题】
12.(多选)如图,光滑水平面上两虚线之间区域内存在垂直于纸面向里的范围足够大的匀强磁场,磁感应强度大小为B.边长为a的正方形导线框PQMN沿图示速度方向进入磁场,当对角线PM刚进入磁场时线框的速度大小为v,方向与磁场边界成45°角,若线框的总电阻为R,则( )
A.PM刚进入磁场时线框中的感应电流大小为
B.PM刚进入磁场时线框所受安培力大小为
C.PM刚进入磁场时两端的电压为
D.PM进入磁场后线框中的感应电流逐渐变小
答案 AD
解析 PM刚进入磁场时有效的切割长度等于a,产生的感应电动势为E=Bav,感应电流为I==,方向沿逆时针,故A正确;NM边所受的安培力大小为F1=BIa=,方向垂直NM斜向下,PN边所受的安培力大小为F2=BIa=,方向垂直PN斜向下,线框所受安培力大小F==,故B错误;PM两端的电压为U=I·=,故C错误;PM进入磁场后,有效切割长度逐渐减小,感应电动势逐渐减小,感应电流逐渐减小,故D正确.
【平动切割磁感线】
13.(多选)(2017·全国卷Ⅱ·20)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )
A.磁感应强度的大小为0.5 T
B.导线框运动的速度的大小为0.5 m/s
C.磁感应强度的方向垂直于纸面向外
D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N
答案 BC
解析 由题图(b)可知,导线框经过0.2 s全部进入磁场,则速度v== m/s=0.5 m/s,选项B正确;由题图(b)可知,cd边切割磁感线产生的感应电动势E=0.01 V,根据E=Blv得,B== T=0.2 T,选项A错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C正确;在t=0.4 s至t=0.6 s这段时间内,导线框中的感应电流I== A=2 A, 所受的安培力大小为F=BIl=0.2×2×0.1 N=0.04 N,选项D错误.
【转动切割磁感线】
14.如图所示,半径为r的金属圆盘在垂直于盘面向里的磁感应强度为B的匀强磁场中,绕O轴以角速度ω沿逆时针方向匀速运动,则通过电阻R的电流的方向和大小是(金属圆盘的电阻不计)( )
A.由c到d,I= B.由d到c,I=
C.由c到d,I= D.由d到c,I=
答案 D
解析 由右手定则,圆盘相当于电源,其电流方向为从边缘指向圆心,所以通过电阻R的电流的方向是由d到c;而金属圆盘产生的感应电动势E=Br2ω,由I=知通过电阻R的电流大小是I=,D正确.
【自感现象】
15.(2017·北京卷·19)图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是( )
A.图甲中,A1与L1的电阻值相同
B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流
C.图乙中,变阻器R与L2的电阻值相同
D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等
答案 C
解析 断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过灯A1,灯A1突然闪亮,随后逐渐变暗,说明IL1>IA1,即RL1
16.如图所示,关于涡流的下列说法中错误的是( )
A.真空冶炼炉是利用涡流来熔化金属的装置
B.家用电磁炉锅体中的涡流是由恒定磁场产生的
C.阻尼摆摆动时产生的涡流总是阻碍其运动
D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流
答案 B
17.(2017·全国卷Ⅰ·18)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )
答案 A
解析 感应电流产生的条件是闭合回路中的磁通量发生变化.在A图中,系统振动时,紫铜薄板随之上下及左右振动,在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动;在B图中,只有紫铜薄板向左振动才产生感应电流,而上下振动和向右振动无感应电流产生;在C图中,无论紫铜薄板上下振动还是左右振动,都不会产生感应电流;在D图中,只有紫铜薄板左右振动才产生感应电流,而上下振动无感应电流产生,故选项A正确,B、C、D错误.
【动生电动势的电路问题】
18.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的磁感应强度为B的匀强磁场中.一接入电路的电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程中PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( )
A.PQ中电流先增大后减小
B.PQ两端电压先减小后增大
C.PQ上拉力的功率先减小后增大
D.线框消耗的电功率先减小后增大
答案 C
解析 设PQ左侧电路的电阻为Rx,则右侧电路的电阻为3R-Rx,所以外电路的总电阻为
R外=,外电路电阻先增大后减小,再根据闭合电路欧姆定律可得PQ中的电流I=先减小后增大,路端电压U=E-Ir先增大后减小,故A、B错误;由于导体棒做匀速运动,拉力等于安培力,即F=BIl,拉力的功率P=BIlv,先减小后增大,所以C正确;外电路的总电阻R外=,当Rx=R时R外最大,最大值为R,小于导体棒的电阻R,又外电阻先增大后减小,由电源的输出功率与外电阻的关系可知,线框消耗的电功率先增大后减小,故D错误.
19.如图所示,竖直平面内有一金属环,半径为a,总电阻为R(指剪开拉直时两端的电阻),磁感应强度为B的匀强磁场垂直穿过环平面,与环的最高点A连接的长度为2a、电阻为的导体棒ef,由水平位置紧贴环面摆下,当摆到竖直位置时,f点的线速度大小为v,则这时导体棒ef两端的电压大小为( )
A. B.
C. D.Bav
答案 A
解析 当摆到竖直位置时,导体棒ef产生的感应电动势为:E=B·2a=2Ba=Bav,圆环被导体棒分为两个半圆环,两半圆环并联,并联电阻R并==,电路电流I==,ef两端的电压大小为UAB=IR并=,选A.
【感生电动势的电路问题】
20.(多选)在如图甲所示的虚线框内有匀强磁场,设图甲所示磁场方向为正,磁感应强度随时间的变化规律如图乙所示.边长为l、电阻为R的正方形均匀线框abcd有一半处在磁场中,磁场方向垂直于线框平面,此时线框ab边的发热功率为P,则( )
A.线框中的感应电动势为
B.线框中的感应电流为2
C.线框cd边的发热功率为
D.b、a两端电势差Uba=
答案 BD
解析 由题可知线框四个边的电阻均为.由题图乙可知,在每个周期内磁感应强度随时间均匀变化,线框中产生大小恒定的感应电流,设感应电流为I,则对ab边有P=I2·R,得I=2,选项B正确;根据法拉第电磁感应定律得E==·l2,由题图乙知,=,联立解得E=,故选项A错误;线框的四边电阻相等,电流相等,则发热功率相等,都为P,故选项C错误;由楞次定律可知,线框中感应电流方向为逆时针,则b端电势高于a端电势,Uba=E=,故选项D正确.
【电磁感应中电荷量的计算】
21.(2018·全国卷Ⅰ·17)如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心.轨道的电阻忽略不计.OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B.现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于( )
A. B. C. D.2
答案 B
解析 在过程Ⅰ中,根据法拉第电磁感应定律,有
E1==
根据闭合电路欧姆定律,有I1=
且q1=I1Δt1
在过程Ⅱ中,有E2==
I2=
q2=I2Δt2
又q1=q2,即=
所以=.
22.如图甲所示,虚线MN左、右两侧的空间均存在与纸面垂直的匀强磁场,右侧匀强磁场的方向垂直纸面向外,磁感应强度大小恒为B0;左侧匀强磁场的磁感应强度B随时间t变化的规律如图乙所示,规定垂直纸面向外为磁场的正方向.一硬质细导线的电阻率为ρ、横截面积为S0,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.求:
(1)t=时,圆环受到的安培力;
(2)在0~t0内,通过圆环的电荷量.
答案 (1),垂直于MN向左 (2)
解析 (1)根据法拉第电磁感应定律,圆环中产生的感应电动势E=S
上式中S=
由题图乙可知=
根据闭合电路欧姆定律有I=
根据电阻定律有R=ρ
t=t0时,圆环受到的安培力大小F=B0I·(2r)+I·(2r)
联立解得F=
由左手定则知,方向垂直于MN向左.
(2)通过圆环的电荷量q=·Δt
根据闭合电路欧姆定律和法拉第电磁感应定律有
=
=
在0~t0内,穿过圆环的磁通量的变化量为
ΔΦ=B0·πr2+·πr2
联立解得q=.
【感生问题的图像】
23.(多选)如图甲所示,三角形线圈abc水平放置,在线圈所处区域存在一变化的磁场,其变化规律如图乙所示.线圈在外力作用下处于静止状态,规定垂直于线圈平面向下的磁场方向为正方向,垂直ab边斜向下的受力方向为正方向,线圈中感应电流沿abca方向为正,则线圈内电流及ab边所受安培力随时间变化规律是( )
答案 AD
解析 根据法拉第电磁感应定律有E==S,根据楞次定律可得感应电流的方向,又线圈中感应电流沿abca方向为正,结合题图乙可得,1~2 s电流为零,0~1 s、2~3 s、3~5 s电流大小恒定,且0~1 s、2~3 s电流方向为正,3~5 s电流方向为负,A正确,B错误;根据安培力的公式,即F安=BIL,因为每段时间电流大小恒定,磁场均匀变化,可得安培力也是均匀变化,根据左手定则可判断出ab边所受安培力的方向,可知C错误,D正确.
【动生问题的图像】
24.(2018·全国卷Ⅱ·18)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为l的正方形金属线框在导轨上向左匀速运动.线框中感应电流i随时间t变化的正确图线可能是( )
答案 D
解析 设线路中只有一边切割磁感线时产生的感应电流为i.
线框位移
等效电路的连接
电流
0~
I=2i(顺时针)
~l
I=0
l~
I=2i(逆时针)
~2l
I=0
分析知,只有选项D符合要求.
25.(2022·浙江诸暨市诊断)如图所示,直角边长为2d的等腰直角三角形EFG区域内存在垂直纸面向外的匀强磁场,左侧有边长为d的正方形金属线框ABCD以恒定速度v水平穿过磁场区域.设逆时针方向为电流正方向,则线框通过磁场过程中,感应电流i随时间t变化的图像是( )
答案 B
解析 在CD边刚进入磁场时,根据楞次定律,感应电流为顺时针方向,即电流方向为负方向,故A、D错误.从CD边完全进入磁场到AB边完全进入磁场的过程中,根据楞次定律,感应电流方向沿顺时针方向,即电流方向为负方向,故B正确,C错误.
【动力学问题“单棒+电阻”模型】
26.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )
A.甲和乙都加速运动
B.甲和乙都减速运动
C.甲加速运动,乙减速运动
D.甲减速运动,乙加速运动
答案 AB
解析 设线圈下边到磁场的高度为h,线圈的边长为l,则线圈下边刚进入磁场时,有v=,
感应电动势为E=nBlv,
两线圈材料相同(设密度为ρ0),质量相同(设为m),
则m=ρ0×4nl×S,
设材料的电阻率为ρ,则线圈电阻
R=ρ=
感应电流为I==
所受安培力大小为F=nBIl=
由牛顿第二定律有mg-F=ma
联立解得a=g-=g-
加速度和线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度.
当g>时,甲和乙都加速运动,
当g<时,甲和乙都减速运动,
当g=时,甲和乙都匀速运动,
故选A、B.
27.如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,间距为L=1 m,质量为m的金属杆ab垂直放置在轨道上且与轨道接触良好,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.P、M间接有阻值为R1的定值电阻,Q、N间接电阻箱R.现从静止释放ab,改变电阻箱的阻值R,测得最大速度为vm,得到与的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g取10 m/s2,则( )
A.金属杆中感应电流方向为a指向b
B.金属杆所受的安培力沿轨道向下
C.定值电阻的阻值为1 Ω
D.金属杆的质量为1 kg
答案 C
解析 由右手定则可判断,金属杆中感应电流方向由b指向a,由左手定则知,金属杆所受的安培力沿轨道向上,A、B错误;总电阻为R总=,I=,当达到最大速度时,金属杆受力平衡,有mgsin θ=BIL=·(R1+R),变形得=·+,根据图像可得=k= s·m-1·Ω,=b=0.5 s·m-1,解得杆的质量m=0.1 kg,定值电阻R1=1 Ω,C正确,D错误.
28.(多选)如图所示,U形光滑金属导轨与水平面成37°角倾斜放置,现将一金属杆垂直放置在导轨上且与两导轨接触良好,在与金属杆垂直且沿着导轨向上的外力F的作用下,金属杆从静止开始做匀加速直线运动.整个装置处于垂直导轨平面向上的匀强磁场中,外力F的最小值为8 N,经过2 s金属杆运动到导轨最上端并离开导轨.已知U形金属导轨两轨道之间的距离为1 m,导轨电阻可忽略不计,金属杆的质量为1 kg、电阻为1 Ω,磁感应强度大小为1 T,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )
A.拉力F是恒力
B.拉力F随时间t均匀增加
C.金属杆运动到导轨最上端时拉力F为12 N
D.金属杆运动的加速度大小为2 m/s2
答案 BCD
解析 t时刻,金属杆的速度大小为v=at,产生的感应电动势为E=Blv,电路中的感应电流I=,金属杆所受的安培力大小为F安=BIl=,由牛顿第二定律可知F=ma+mgsin 37°+,F是t的一次函数,选项A错误,B正确;t=0时,F最小,代入数据可求得a=
2 m/s2,选项D正确;t=2 s时,代入数据解得F=12 N,选项C正确.
【动力学问题“单棒+电容器”模型】
29.(2021·河北卷·7)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B,导轨间距最窄处为一狭缝,取狭缝所在处O点为坐标原点,狭缝右侧两导轨与x轴夹角均为θ,一电容为C的电容器与导轨左端相连,导轨上的金属棒与x轴垂直,在外力F作用下从O点开始以速度v向右匀速运动,忽略所有电阻,下列说法正确的是( )
A.通过金属棒的电流为2BCv2tan θ
B.金属棒到达x0时,电容器极板上的电荷量为BCvx0tan θ
C.金属棒运动过程中,电容器的上极板带负电
D.金属棒运动过程中,外力F做功的功率恒定
答案 A
解析 根据楞次定律可知电容器的上极板应带正电,C错误;
由题知金属棒匀速切割磁感线,根据几何关系知切割长度为L=2xtan θ,x=vt
则产生的感应电动势为E=2Bv2ttan θ
由题图可知电容器直接与电源相连,则电容器的电荷量为Q=CE=2BCv2ttan θ
则流过金属棒的电流I==2BCv2tan θ,A正确;
当金属棒到达x0处时,金属棒产生的感应电动势为
E′=2Bvx0tan θ
则此时电容器的电荷量为Q′=CE′=2BCvx0tan θ,B错误;
由于金属棒做匀速运动,
则F=F安=BIL=4B2Cv3tan2θ·t,
F与t成正比,则F为变力,根据力做功的功率公式P=Fv
可知功率P随力F变化而变化,D错误.
【应用功能关系解决电磁感应中的能量问题】
30.(2022·浙江丽水市模拟)如图所示,光滑绝缘轨道PQ、MN互相平行,间距为L,与水平面成θ角,正方形金属线框abcd边长为L,质量为m,总电阻为R,线框的ad和bc边始终与轨道接触并沿轨道下滑.沿导轨方向建立x轴,以O点为坐标原点,向下为x轴正方向.导轨间在x≥0区域内,存在垂直轨道向下的磁场,磁感应强度B=kx(k为已知常量),起初ab边处在x=0处,现使线框从静止开始下滑,当ab边下滑到x= L1时,线框的速度为v1;线框ab边下滑到x= L2之前已达到稳定速度.重力加速度为g,求:
(1)ab边下滑到x= L1时线框中电流的大小和方向;
(2)ab边下滑到x= L1时线框的加速度为多大;
(3)线框从开始下滑到ab边到达x= L2的过程中产生的焦耳热.
答案 (1) 电流方向:adcba
(2)gsin θ-
(3)mgL2sin θ-
解析 (1)回路的电动势为E=kL2v1
回路的电流I==,电流方向∶adcba
(2)安培力FA=kL2I=kL2=
由牛顿第二定律得
mgsin θ-FA=ma,a=gsin θ-
(3)由动能定理得mgL2sin θ-WA=mv22
由平衡关系得mgsin θ=,v2=
又有 WA=Q
解得:Q=mgL2sin θ-.
【应用能量守恒定律解决电磁感应中的能量问题】
31.如图所示,在竖直平面内建立xOy坐标系,在0≤x≤0.4 m范围内存在一具有理想边界,磁感应强度大小为0.1 T,方向垂直纸面向里的匀强磁场区域.一边长L=0.10 m、质量m=0.02 kg的匀质正方形刚性导线框abcd,从图示位置[c点的坐标为(0,0.4 m)]以初速度v0=2.0 m/s水平向右抛出.当线框刚好全部离开磁场时,下边界恰好到达x轴,且其水平速度为零.线框在全过程中始终处于xOy平面内,其ab边与x轴保持平行,空气阻力不计,重力加速度g取10 m/s2.求:
(1)线框刚进入磁场时a、d两点电势差Uad的大小;
(2)线框下边界刚到达x轴时的速度和在全过程中产生的焦耳热Q;
(3)若已知在线框进入磁场过程中,a、d两点电势差Uad随水平位移x变化的函数关系为:Uad=U0-kx(式中U0、k均为常数),求线框中心通过x=0.2 m位置时水平方向的速度大小.
答案 见解析
解析 (1)E=BLv0=0.02 V
Uad==5×10-3 V
(2)线框竖直方向所受合力大小为mg,
可得a==g.
由vy2=2gh得:vy=2 m/s
由能量守恒定律可得:mgh+mv02=Q+mvy2
解得:Q=0.04 J
(3)因为线框在进入磁场时Uad=U0-kx,可得速度变化量与水平位移成正比.
同理可得线框在离开磁场时,速度变化量也与水平位移成正比v中==1 m/s.
【动量定理单棒模型】
32.水平面上放置两个互相平行的足够长的金属导轨,间距为d,电阻不计,其左端连接一阻值为R的电阻.导轨处于方向竖直向下的匀强磁场中,磁感应强度大小为B.质量为m、长度为d、阻值为R与导轨接触良好的导体棒MN以速度v0垂直导轨水平向右运动直到停下.不计一切摩擦,则下列说法正确的是( )
A.导体棒运动过程中所受安培力先做正功再做负功
B.导体棒在导轨上运动的最大距离为
C.整个过程中,电阻R上产生的焦耳热为mv02
D.整个过程中,导体棒的平均速度大于
答案 B
解析 导体棒向右运动过程中一直受到向左的安培力作用,即安培力一直做负功,选项A错误;由动量定理可知-dB·Δt=0-mv0,其中·Δt=·Δt=,ΔΦ=Bdx,解得x=,故B正确;导体棒的阻值与左端所接电阻的阻值相等,故电阻R上产生的焦耳热应该为mv02,故C错误;根据a==可知,导体棒做的是加速度逐渐减小的减速运动,故其平均速度将小于做匀减速运动的平均速度,即小于,故D错误.
【不等间距上的双棒模型】
33.(多选)如图所示,光滑水平平行导轨置于匀强磁场中,磁感应强度大小为B,方向垂直水平面向下,左侧导轨间距为L,右侧导轨间距为2L,且导轨两侧均足够长.质量为m的导体棒ab和质量为2m的导体棒cd均垂直于导轨放置,处于静止状态.ab的电阻为R,cd的电阻为2R,两棒始终在对应的导轨部分运动.现给cd一水平向右的初速度v0,则( )
A.两棒组成的系统动量守恒
B.最终通过两棒的电荷量为
C.ab棒最终的速度为v0
D.从cd棒获得初速度到二者稳定运动过程中产生的焦耳热为mv02
答案 BC
解析 当cd棒向右运动时,受向左的安培力,ab棒受向右的安培力,且Fcd=2Fab,可知两棒组成的系统合外力不为零,则系统动量不守恒,选项A错误;cd棒获得速度后,电路中产生感应电流,cd棒减速,ab棒加速,当BLvab=2BLvcd时,电路中磁通量不变,没有感应电流,最终两棒做匀速直线运动,由动量定理得-2BLt=2mvcd-2mv0,BLt=mvab,得vcd+vab=v0,联立解得vab=v0,vcd=v0,因q=t,可得q=,B、C正确;从cd棒获得初速度到二者稳定运动,此过程系统产生的焦耳热为Q=·2mv02-·mvab2-·2mvcd2,解得Q=mv02,D错误.
【“电容器+棒”模型】
34.(多选)如图甲所示,水平面上有两根足够长的光滑平行金属导轨MN和PQ,两导轨间距为l,电阻均可忽略不计.在M和P之间接有阻值为R的定值电阻,导体杆ab质量为m、电阻为r,与导轨垂直且接触良好.整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中.现给杆ab一个初速度v0,使杆向右运动.则( )
A.当杆ab刚具有初速度v0时,杆ab两端的电压U=,且a点电势高于b点电势
B.通过电阻R的电流I随时间t的变化率的绝对值逐渐增大
C.若将M和P之间的电阻R改为接一电容为C的电容器,如图乙所示,同样给杆ab一个初速度v0,使杆向右运动,则杆ab稳定后的速度为v=
D.在C选项中,杆稳定后a点电势高于b点电势
答案 ACD
解析 当杆ab刚具有初速度v0时,其切割磁感线产生的感应电动势E=Blv0,杆ab两端的电压U==,根据右手定则知,感应电流的方向为b到a,杆ab相当于电源,a相当于电源的正极,则a点电势高于b点电势,A正确;通过电阻R的电流I=,由于杆ab速度减小,则电流减小,所受安培力减小,所以杆ab做加速度逐渐减小的减速运动,速度v随时间t的变化率的绝对值逐渐减小,则通过电阻R的电流I随时间t的变化率的绝对值逐渐减小,B错误;当杆ab以初速度v0开始切割磁感线时,电路开始给电容器充电,有电流通过杆ab,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动,电容器两端的电压U=Blv,而q=CU,对杆ab,根据动量定理得-Bl·Δt=-Blq=mv-mv0,联立可得v=,C正确;杆稳定后,电容器不再充电,回路中没有电流,根据右手定则知,a点的电势高于b点电势,D正确.
35.电磁炮是利用磁场对通电导体的作用使炮弹加速的,其原理示意图如图所示.图中直流电源电动势为E,内阻为r,电容器的电容为C,两根固定的平行金属导轨间距为d,长度为L,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场,炮弹可视为质量为m、电阻为R的金属棒MN,垂直放在两导轨间的最左端并处于静止状态,开关S接1,使电容器充电,充到电容器两端电压为U0时将开关S接至2,MN开始向右加速运动.当炮弹离开导轨前达到最大速度,在MN沿导轨运动过程中始终与导轨垂直且接触良好,该装置的电感及摩擦可以忽略.试求:
(1)直流电源的a端为正极还是负极;
(2)电容器电压刚充到U0时电源的电流i;
(3)整个过程安培力对炮弹所做的功W;
(4)若已知电容器储存的电能为E=CU2(U为电容器两板间的电压),试求电容器放电过程中产生的焦耳热Q(电磁辐射可以忽略).
答案 (1)负极 (2) (3)m()2 (4)Q=CU02-(CB2d2+m)()2
解析 (1)直流电源的a端为负极
(2)由闭合电路欧姆定律得E=U0+ir
解得i=
(3)电容器上电荷量为Q0=CU0
开关S接2后,MN开始向右加速运动,速度达到的最大值为vm.
设在此过程MN的平均电流为,MN受到的平均安培力为,
有=Bd
由动量定理,有Δt=mvm
又Δt=Q0-Qm
而Qm=CBdvm
得vm=
由动能定理得W=mvm2=m()2
(4)由能量守恒定律Q=CU02-CU12-mvm2
U1=Bdvm
得Q=CU02-(CB2d2+m)()2.
【动量守恒定律在电磁感应中的应用】
36.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上,t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是( )
答案 AC
解析 棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有mv0=mv1+mv2,解得v1=v2=,选项A、C正确,B、D错误.
37.(多选)如图所示,两电阻可以忽略不计的平行金属长直导轨固定在水平面上,相距为L,另外两根长度为L、质量为m、电阻为R的相同导体棒垂直静置于导轨上,导体棒在长导轨上可以无摩擦地滑动,导轨间存在竖直向下的匀强磁场,磁感应强度大小为B,某时刻使导体棒a获得大小为v0、水平向右的初速度,同时使导体棒b获得大小为2v0、水平向右的初速度,下列结论正确的是( )
A.该时刻回路中产生的感应电动势为3BLv0
B.该时刻导体棒a的加速度为
C.当导体棒a的速度大小为时,导体棒b的速度大小也是
D.运动过程中通过导体棒a电荷量的最大值qm=
答案 BCD
解析 根据右手定则可知两根导体棒切割磁感线产生的感应电动势方向相反,故该时刻回路中产生的感应电动势E=BL·2v0-BLv0=BLv0,A错误;在该时刻,回路中的感应电流I==,导体棒a所受安培力大小F=BIL=ma,可得a=,B正确;由于两导体棒整体在水平方向动量守恒,当导体棒a的速度大小为时,根据动量守恒定律得m·2v0+mv0=m·+mv1,解得v1=,C正确;由上解析知v共=,对a由动量定理有安Δt=mv共-mv0,而由安培力公式得安=BL,通过导体棒a电荷量的最大值qm=Δt=,D正确.
38.如图所示,有两相距L=1 m的足够长光滑平行金属导轨MN、PQ置于绝缘水平面上,导轨电阻不计,导轨右端紧靠一绝缘弹性墙,整个装置处于竖直向上的匀强磁场中,磁感应强度B=1 T.质量m1=0.1 kg、电阻R1=4 Ω的导体棒ab与质量m2=0.4 kg、电阻R2=6 Ω的导体棒cd垂直导轨放置,在外力作用下使两导体棒间夹有被压缩的一轻质短弹簧(可认为两棒是挨着的);弹簧的弹性势能Ep=1 J,ab棒与墙的距离l=2 m.某时刻撤去外力,弹簧瞬间恢复原长,使两棒分离,弹簧恢复原长后立即撤去,棒在运动过程中始终与导轨垂直且与导轨保持良好接触.求:
(1)弹簧释放后瞬间ab、cd棒的速度大小.
(2)两棒最后的距离x;
(3)整个过程中ab棒产生的焦耳热.
答案 (1)4 m/s 1 m/s (2)1.6 m (3)0.364 J
解析 (1)将压缩的弹簧释放后瞬间ab、cd的速度大小分别为v1、v2
m1v1=m2v2
m1v12+m2v22=Ep
解得v1=4 m/s,v2=1 m/s
(2)两棒弹开后,有m1v1′=m2v2′(v1′方向向右,v2′方向向左)
m1v1′Δt=m2v2′Δt
m1x1=m2x2
当x1=l=2 m时,x2=0.5 m
设ab棒运动到弹性墙时速度为v1″,对ab棒由动量定理得
-BiLΔt=m1v1″-m1v1
-BL=m1v1″-m1v1
解得v1″=1.5 m/s
此时设cd速度大小为v2″,有
m1v1″=m2v2″
解得v2″=0.375 m/s(cd棒速度方向向左,大小为0.375 m/s)即cd还在向左运动.
ab棒被墙反弹后,ab、cd动量守恒,最后达到共同速度v3,有
m2v2″+m1v1″=(m1+m2)v3
对ab棒由动量定理得-BiLΔt=m1v3-m1v1″
-BL=m1v3-m1v1″
解得Δx=0.9 m
ab、cd棒间的距离为x=l+x2-Δx=1.6 m
(3)Q总=Ep-(m1+m2)v32=0.91 J
QAB=Q总=0.364 J.
单元复习【过考点】 第四章 电磁振荡与电磁波-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册): 这是一份单元复习【过考点】 第四章 电磁振荡与电磁波-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册),文件包含单元复习过考点第四章电磁振荡与电磁波-2022-2023学年高二物理单元复习过过过人教版2019选择性必修第二册解析版docx、单元复习过考点第四章电磁振荡与电磁波-2022-2023学年高二物理单元复习过过过人教版2019选择性必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
单元复习【过考点】 第五章 传感器-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册): 这是一份单元复习【过考点】 第五章 传感器-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册),文件包含单元复习过考点第五章传感器-2022-2023学年高二物理单元复习过过过人教版2019选择性必修第二册解析版docx、单元复习过考点第五章传感器-2022-2023学年高二物理单元复习过过过人教版2019选择性必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
单元复习【过考点】 第三章 交变电流-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册): 这是一份单元复习【过考点】 第三章 交变电流-2022-2023学年高二物理单元复习(人教版2019选择性必修第二册),文件包含单元复习过考点第三章交变电流-2022-2023学年高二物理单元复习过过过人教版2019选择性必修第二册解析版docx、单元复习过考点第三章交变电流-2022-2023学年高二物理单元复习过过过人教版2019选择性必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。