- 单元复习07 计数原理【过习题】(分级培优练)- 2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册) 试卷 0 次下载
- 单元复习07 计数原理【过习题】(考点练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册) 试卷 0 次下载
- 单元复习07 计数原理【过知识】(课件)- 2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册) 课件 0 次下载
- 单元复习08 概率【过习题】(考点练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册) 试卷 0 次下载
- 单元复习08 概率【过知识】(课件)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册) 课件 0 次下载
单元复习08 概率【过习题】(分级培优练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册)
展开单元复习08 概率
一、单选题
1.已知,则可表示不同的值的个数为( )
A.8 B.9 C.10 D.12
2.一个架子上有8本书,每次至少拿出1本,拿完为止,则一共有几种拿法( )
A.108 B.120 C.128 D.144
3.祖冲、刘辉、米德、牛敦、高师、欧啦六个人到A、B、C三个地点接种新冠疫苗,每个地点去两人,祖冲不去A点,刘辉去B点,不同的分配方法种数是( )
A.12 B.18 C.24 D.30
4.已知,则x的取值为( )
A.7 B.8 C.9 D.10
5.七名同学站成一排照毕业留念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的排法有( )
A.240种 B.192种 C.120种 D.96种
6.将0,1,2,3,4,5这6个数组成无重复数字的五位偶数的个数为( )
A.360 B.312 C.264 D.288
二、多选题
7.对于关于下列排列组合数,结论正确的是( )
A. B.
C. D.
8.现有不同的黄球5个,黑球6个,蓝球4个,则下列说法正确的是( )
A.从中任选1个球,有15种不同的选法
B.若每种颜色选出1个球,有120种不同的选法
C.若要选出不同颜色的2个球,有31种不同的选法
D.若要不放回地选出任意的2个球,有240种不同的选法
9.甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )
A.如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种
B.最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种
C.甲乙不相邻的排法种数为72种
D.甲乙丙按从左到右的顺序排列的排法有20种
三、填空题
10.已知,则正整数___________.
11.3个学生和3个老师共6个人站成一排照相,有且仅有两个老师相邻,则不同站法的种数是_______(结果用数字表示).
12.将学号为1~6的六名大学生全部安排到4所中学教育实习,若每所中学都有大学生教育实习,且学号为1,2的两名学生要安排在同一所中学,学号为5,6的两名学生不能安排在同一所中学,则不同的安排方法共有______种.
四、解答题
13.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.
(1)从书架上任取1本书,有多少种不同取法?
(2)从书架的第1层、第2层、第3层各取1本书,有多少种不同取法?
14.(1)用0,2,4,6,8这五个数字可以组成多少个不同且无重复数字的四位数?
(2)将5件不同的礼物分给甲1件,乙、丙各2件,试问有多少种不同的分配方法?
15.(1)某校运动会上甲、乙、丙、丁四名同学在100m、400m、800m三个项目中选择,每人报一项,共有多少种报名方法?
(2)若甲、乙、丙、丁四名同学选报100m、400m、800m三个项目,每项均有一人报名,且每人至多报一项,共有多少种报名方法?
(3)若甲、乙、丙、丁名同学争夺100m、400m、800m三项冠军,共有多少种可能的结果?
16.已知的展开式中二项式系数和为16.
(1)求展开式中二项式系数最大的项;
(2)设展开式中的常数项为p,展开式中所有项系数的和为q,求.
一、单选题
1.某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为
A.600 B.812 C.1200 D.1632
2.的展开式中,的系数为
A. B. C. D.
3.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有
A.72种 B.108种 C.36种 D.144种
4.现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是( )
A.每人都安排一项工作的不同方法数为54
B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为
C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为
D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是
5.设集合,设集合是集合的非空子集,中的最大元素和最小元素之差称为集合的直径. 那么集合所有直径为的子集的元素个数之和为( )
A. B. C. D.
6.从装有个不同小球的口袋中取出个小球(),共有种取法.在这种取法中,可以视作分为两类:第一类是某指定的小球未被取到,共有种取法;第二类是某指定的小球被取到,共有种取法.显然,即有等式:成立.试根据上述想法,下面式子(其中)应等于
A. B. C. D.
二、多选题
7.对于二项式,以下判断正确的有( )
A.存在,展开式中有常数项
B.对任意,展开式中没有常数项
C.对任意,展开式中没有的一次项
D.存在,展开式中有的一次项
8.某中学为提升学生劳动意识和社会实践能力,利用周末进社区义务劳动,高三一共6个班,其中只有1班有2个劳动模范,本次义务劳动一共20个名额,劳动模范必须参加并不占名额,每个班都必须有人参加,则下列说法正确的是( )
A.若1班不再分配名额,则共有种分配方法
B.若1班有除劳动模范之外学生参加,则共有种分配方法
C.若每个班至少3人参加,则共有90种分配方法
D.若每个班至少3人参加,则共有126种分配方法
三、填空题
9.某区突发新冠疫情,为抗击疫情,某医院急从甲、乙、丙等9名医务工作者中选6人参加周一到周六的某社区核酸检测任务,每天安排一人,每人只参加一天.现要求甲、乙、丙至少选两人参加.考虑到实际情况,当甲、乙、丙三人都参加时,丙一定得排在甲乙之间,那么不同的安排数为__________.(请算出实际数值)
10.如图,我们在第一行填写整数到,在第二行计算第一行相邻两数的和,像在三角(杨辉三角)中那样,如此进行下去,在最后一行我们会得到的整数是______.
四、解答题
11.将20个完全相同的球放入编号为1,2,3,4,5的五个盒子中.
(1)若要求每个盒子至少放一个球,则一共有多少种放法?
(2)若每个盒子可放任意个球,则一共有多少种放法?
(3)若要求每个盒子放的球的个数不小于其编号数,则一共有多少种放法?
12.用,,,,,,组成无重复数字七位数,满足下述条件的七位数各有多少个?
(1)偶数不相邻;
(2)偶数一定在奇数位上;
(3)和之间恰有一个奇数,没有偶数;
(4)三个偶数从左到右按从小到大的顺序排列.
13.(1)把6个相同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?
(2)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?
(3)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?
(4)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?
14.对任意,定义+,其中为正整数.
(1)求的值;
(2)探究是否为定值,并证明你的结论;
(3)设,是否存在正整数,使得成等差数列,若存在,求出的值;若不存在,请说明理由.
一、单选题
1.(2022·安徽黄山·统考一模)2022年11月30日,神舟十四号字航员陈冬、刘洋、蔡旭哲和神舟十五号宇航员费俊龙、邓清明、张陆顺利“会师太空”,为记录这一历史时刻,他们准备在天河核心舱合影留念.假设6人站成一排,要求神舟十四号三名航天员互不相邻,且神舟十五号三名航天员也互不相邻,则他们的不同站法共有( )种
A.72 B.144 C.36 D.108
2.(2023·重庆·统考一模)2022年8月某市组织应急处置山火救援行动,现从组织好的5支志愿团队中任选1支救援物资接收点服务,另外4支志愿团队分配给“传送物资、砍隔离带、收捡垃圾”三个不同项目,每支志愿团队只能分配到1个项目,且每个项目至少分配1个志愿团队,则不同的分配方案种数为( )
A.36 B.81 C.120 D.180
3.(2023·全国·模拟预测)展开式的常数项为( )
A.1 B.15 C.60 D.76
4.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)某项活动安排了4个节目,每位观众都有6张相同的票,活动结束后将票全部投给喜欢的节目,一位观众最喜欢节目A,准备给该节目至少投3张,剩下的票则随机投给其余的节目,但必须要A节目的得票数是最多的,则4个节目获得该观众的票数情况有( )种.
A.150 B.72 C.20 D.17
5.(2021·天津静海·静海一中校考三模)已知的二项展开式的奇数项二项式系数和为,若,则等于( )
A. B. C. D.
6.(2011·四川广元·统考一模)2010年广州亚运会结束了,某运动队的7名队员合影留念,计划站成一横排,但甲不站最左端,乙不站最右端,丙不站正中间.则理论上他们的排法有( )
A.3864种 B.3216种 C.3144种 D.2952种
二、多选题
7.(2022·江苏扬州·统考模拟预测)已知,则下列说法中正确的有( )
A.的展开式中的常数项为84
B.的展开式中不含的项
C.的展开式中的各项系数之和与二项式系数之和相等
D.的展开式中的二项式系数最大的项是第四项和第五项
8.(2022·全国·模拟预测)下列关于多项式的展开式的结论中,正确的是( )
A.各项系数之和为 B.各项系数的绝对值之和为
C.不存在项 D.常数项为
三、填空题
9.(2023·陕西西安·校考模拟预测)某重点高中选派3名男教师和2名女教师去支教,将5人分配到3所学校每所学校至少一人,每人只去一所学校,则两名女教师分到同一所学校的情况种数为________种.
10.(2023·福建·统考一模)近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A,B角色各1人,C角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A,B角色不可同时为女生.则店主共有__________种选择方式.
单元复习08 概率【过习题】(考点练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册): 这是一份单元复习08 概率【过习题】(考点练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册),文件包含单元复习08概率过习题考点练解析版docx、单元复习08概率过习题考点练原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
单元复习07 计数原理【过习题】(分级培优练)- 2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册): 这是一份单元复习07 计数原理【过习题】(分级培优练)- 2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册),文件包含单元复习07计数原理过习题分级培优练解析版docx、单元复习07计数原理过习题分级培优练原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
单元复习06 空间向量与立体几何【过习题】(分级培优练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册): 这是一份单元复习06 空间向量与立体几何【过习题】(分级培优练)-2022-2023学年高二数学单元复习(苏教版2019选择性必修第二册),文件包含单元复习06空间向量与立体几何过习题分级培优练解析版docx、单元复习06空间向量与立体几何过习题分级培优练原卷版docx等2份试卷配套教学资源,其中试卷共89页, 欢迎下载使用。