搜索
    上传资料 赚现金
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第二十七章 相似【题型专练】(原卷版).docx
    • 解析
      第二十七章 相似【题型专练】(解析版).docx
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)01
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)02
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)03
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)01
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)02
    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)03
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)

    展开
    这是一份第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版),文件包含第二十七章相似题型专练解析版docx、第二十七章相似题型专练原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    第二十七章 相似
    考查题型一 相似图形
    典例1.(2021·重庆市巴川小班实验中学校九年级阶段练习)观察下列每组图形,是相似图形的是(  )
    A. B.
    C. D.
    【答案】A
    【分析】根据相似图形的定义进行判断即可.
    【详解】A.两图形形状相同,是相似图形,故A正确;
    B.两图形形状不同,不是相似图形,故B错误;
    C.两图形形状不同,不是相似图形,故C错误;
    D.两图形形状不同,不是相似图形,故D错误.
    故选:A.
    【点睛】本题主要考查了相似图形的定义,熟练掌握形状相同的两个图形为相似图形,是解题的关键.
    变式1-1.(2022·山西省运城市运康中学校九年级阶段练习)在下列各组图形中,一定相似的是(   )
    A. B. C. D.
    【答案】D
    【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.
    【详解】解:A.形状不相同,不符合相似图形的定义,此选项不符合题意;
    B.形状不相同,不符合相似图形的定义,此选项不符合题意;
    C.形状不相同,不符合相似图形的定义,此选项不符合题意;
    D.形状相同,但大小不同,符合相似图形的定义,此选项符合题意;
    故选:D.
    【点睛】本题考查的是相似图形的定义,即图形的形状相同,但大小不一定相同的两个图形是相似图形,掌握相似图形的定义是解题的关键.
    变式1-2.下列每个选项的两个图形,不是相似图形的是(  )
    A. B.
    C. D.
    【答案】D
    【分析】根据相似图形的定义,即可求解.
    【详解】解:A.形状相同,符合相似形的定义,此选项不符合题意;
    B.形状相同,符合相似形的定义,此选项不符合题意;
    C.形状相同,符合相似形的定义,此选项不符合题意;
    D.形状不相同,不符合相似形的定义,此选项符合题意;
    故选:D.
    【点睛】本题考查的是相似形的定义,熟练掌握图形的形状相同,但大小不一定相同的两个图形是相似图形是解题的关键.
    变式1-3.(2022·湖南·九年级单元测试)下列图形中,不是相似图形的一组是(   )
    A. B. C. D.
    【答案】D
    【分析】根据相似图形的定义,对各选项进行一一分析,即可得出结论.
    【详解】解:A.两个图形的形状相同,符合相似形的定义,此选项不符合题意;
    B.两个图形的形状相同,符合相似形的定义,此选项不符合题意;
    C.两个图形的形状相同,符合相似形的定义,此选项不符合题意;
    D.形状不相同,不符合相似形的定义,此选项符合题意.
    故选:D.
    【点睛】本题考查了相似图形的定义,掌握相似图形的定义并能结合具体图形进行准确判断是解题的关键.
    考查题型二 平行线分线段成比例
    典例2.(2022·山东·东营市东营区实验中学九年级阶段练习)如图,,则下列结论不正确的是(  )

    A. B. C. D.
    【答案】C
    【分析】用平行线分线段成比例定理,可得到比例式,再对各选项逐一判断.
    【详解】解:∵,
    ∴ , 故A选项不符合题意;
    ∵,
    ∴ , 故B选项不符合题意;
    ∵,
    ∴ ,
    ∴, 故C选项符合题意;
    ∵,
    ∴,故D选项不符合题意;
    故选C.
    【点睛】本题考查平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.熟知该定理是解题的关键.
    变式2-1.(2022·安徽安庆·九年级阶段练习)如图,,与交于点,过点作,交线段于点,则下列各式错误的是(  )

    A. B. C. D.
    【答案】D
    【分析】根据平行线分线段成比例定理一一判断即可.
    【详解】解:对A、B选项.∵,,
    ∴,
    ∴,,故AB正确,不符合题意;
    C.∵,,
    ∴,故C正确,不符合题意;
    D.∵,而,
    ∴,故D错误,不符合题意.
    故选:D.
    【点睛】本题主要考查平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理,属于中考常考题型.
    变式2-2.(2022·安徽·合肥市五十中学东校九年级阶段练习)如图,DEBC,EFAB,若AD=3,BD=4,CF=2,则BF的长为(  )

    A. B.2 C. D.3
    【答案】A
    【分析】根据平行线分线段成比例定理计算即可.
    【详解】解:∵DEBC,EFAB,



    ∴,即.
    故选:A.
    【点睛】本题考查平行线分线段成比例,掌握这一定理是解题得关键.
    变式2-3.(2022·广西·南宁市三美学校九年级阶段练习)如图,直线,直线和被,,所截,如果,,,那么的长是(    )

    A.2 B. C.1 D.
    【答案】B
    【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.
    【详解】解:∵直线,
    ∴,
    ∵AB=2,BC=3,EF=2,
    ∴,
    ∴DE=,
    故选:B.
    【点睛】本题考查了平行线分线段成比例,找准对应线段是解题的关键.
    考查题型三 由平行截线求线段的长或比值
    典例3.(2022·辽宁·鞍山市第二中学九年级阶段练习)如图,在中,,,,,则的长为(  )

    A.3 B.4 C.5 D.6
    【答案】D
    【分析】根据平行线分线段成比例定理求解即可.
    【详解】解:∵,
    ∴,
    ∵,,,
    ∴,
    解得:,
    ∴.
    故选:D
    【点睛】本题考查了平行线分线段成比例,熟练掌握平行线分线段成比例定理是解本题的关键.平行线分线段成比例定理指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长度成比例.
    变式3-1.(2022·北京市新英才学校九年级阶段练习)如图,在中,,,若,则BC的值为(  )

    A.12 B.10 C.9 D.8
    【答案】C
    【分析】先根据得出,再根据平行线分线段成比例定理列出比例式,将代入计算即可.
    【详解】解:∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
    变式3-2.(2022·江苏·阳山中学九年级阶段练习)如图,在△ABC中,,若AD∶DB=3∶2,AE=6cm,则AC的长为(    )

    A.6cm B.5cm C.4cm D.10cm
    【答案】D
    【分析】根据平行线分线段成比例,即可求解.
    【详解】解∶∵,AD∶DB=3:2,
    ∴AD∶DB=AE∶EC=3∶2,
    ∵AE=6cm,
    ∴6∶EC=3∶2,
    ∴EC=4cm,
    ∴AC=AE+EC=10cm.
    故选:D
    【点睛】本题主要考查了成比例线段,熟练掌握平行线分线段成比例基本事实是解题的关键.
    变式3-3.(2022·湖南·长沙市北雅中学模拟预测)如图,在 中,点 是 上一点,过 作 交 于点 , , ,则 与 的比是(  )

    A.3:2 B.3:5 C.9:16 D.9:4
    【答案】B
    【分析】根据平行线分线段成比例定理列式计算即可.
    【详解】解:∵ , , ,
    ∴,
    ∴ 与 的比是 ,
    故选:.
    【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
    考查题型四 相似三角形的判定
    典例4.(2022·上海·新区川沙新镇江镇中学九年级阶段练习)如图,分别以下列选项作为一个已知条件,不一定能得到△AOB与△COD相似的是(    )

    A. B. C. D.∠BAC=∠BDC
    【答案】A
    【分析】根据相似三角形的判定方法对各选项进行判断即可得出答案.
    【详解】解:A.若,因为只知道∠AOB=∠COD,不符合两边及其夹角的判定,不一定能得到△AOB∽△DOC,故本选项符合题意;
    B.若,结合∠AOB=∠COD,可得△AOB∽△COD,故本选项不符合题意;
    C.若,结合∠AOB=∠COD,根据两边及其夹角的方法可得△AOB∽△DOC,故本选项不符合题意;
    D.若∠BAC=∠BDC,结合∠AOB=∠COD,可得△AOB∽△DOC,故本选项不符合题意.
    故选:A.
    【点睛】本题考查了相似三角形的判定,解答本题的关键是熟练掌握相似三角形判定的三种方法.
    变式4-1.如图,D是△ABC一边BC上的一点,△ABC∽△DBA的条件是(    )

    A. B.=BD·BC C.AB2=CD·BC D.
    【答案】D
    【解析】略
    变式4-2.如图,点在的边上,添加一个条件,不能判断与相似的是(   )

    A. B.
    C. D.
    【答案】B
    【分析】根据三角形相似判定即可选出答案.
    【详解】解:A、,,两组对应角相等的三角形相似,选项正确,不符合题意.
    B、CD与AB不是对应边,不能说明相似,选项错误,符合题意.
    C、,,两组对应角相等的三角形相似,选项正确,不符合题意.
    D、,,两组对边成比例,夹角相等的三角形相似,选项正确,不符合题意.
    故选:B.
    【点睛】本题考查了三角形相似判定.三组对应边成比例的三角形相似;两组对应边成比例,夹角相等的三角形相似;两组对应角相等的三角形相似.
    变式4-3.如图所示,网格中相似的两个三角形是(    )

    A.①与② B.①与③ C.③与④ D.②与③
    【答案】B
    【分析】分别根据网格的特点求得各三角形三边的长,根据三边对应成比例判断两三角形相似即可.
    【详解】解:根据网格的特点,①号三角形的三边长分别为:,2,,
    ②号三角形的三边长分别为:,,3,
    ③号三角形的三边长分别为:2,,,
    ④号三角形的三边长分别为:,3,,

    ①与③相似,故B选项正确,符合题意;其他选项不正确
    故选:B.
    【点睛】本题考查了网格中判断相似三角形,分别求得各三角形的边长是解题的关键.
    考查题型五 相似三角形的性质
    典例5.(2022·河南·南阳市第二十一学校九年级阶段练习)如图,在中,,为边上的中线,于点.

    (1)求证:;
    (2)若,,求线段的长.
    【答案】(1)证明见解析
    (2)

    【分析】(1)由等腰三角形的性质可得,,即可解决问题;
    (2)先利用等腰三角形的性质和勾股定理求出的长,由得,即可求解.
    (1)
    证明:∵,为边上的中线,
    ∴,,,
    ∵,
    ∴,
    ∴;
    (2)
    解:∵,,,为边上的中线,
    ∴,,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    ∴线段的长为.
    【点睛】本题考查相似三角形的判定和性质,等腰三角形的性质,勾股定理等知识.理解和掌握相似三角形的判定和性质是解题的关键.
    变式5-1.(2022·福建·宁德市博雅培文学校九年级阶段练习)如图,Rt中,,,垂足为D.

    (1)求证.
    (2)若,,求的长.
    【答案】(1)见详解
    (2)

    【分析】(1)结合题意易知,再结合,利用“两角对应相等,两个三角形相似”证出;
    (2)根据相似三角形的性质“相似三角形对应边的比相等”,可知,代入数值并求解即可计算的长.
    (1)
    证明:∵,,
    ∴,
    又∵,
    ∴;
    (2)
    解:∵,,
    ∴,
    ∵,
    ∴,即,
    整理,得,解得或(不合题意,舍去),
    ∴的长为.
    【点睛】本题考查相似三角形的判定与性质,解题关键是熟练掌握相似三角形的判定与性质.
    变式5-2.(2022·江苏·姜堰区实验初中九年级阶段练习)如图,在△ABC中,∠C=90°,AC=3,CB=5,D是BC边上一点,且DB=1,点E是AC边上的一个点,且AE,过点E作交AD于点F.

    (1)求EF的长.
    (2)求证:△DEF∽△ABD.
    【答案】(1)
    (2)证明见解析

    【分析】(1)利用,证明△AEF∽△ACD,根据对应边对应成比例进行计算即可;
    (2)利用勾股定理求出AD,利用,求出AF,利用求出DF,从而得出,在利用外角的性质,得到,即可得证.
    (1)
    解:∵CB=5,DB=1,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴△AEF∽△ACD,
    ∴,即:,
    ∴;
    (2)
    证明:∵∠C=90°,AC=3,CD=4,
    ∴,
    ∵∴△AEF∽△ACD,
    ∴,即:,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    又∵,
    ∴,
    ∴△DEF∽△ABD
    【点睛】本题考查相似三角形的判定和性质.熟练掌握相似三角形的判定方法,证明两个三角形相似是解题的关键.
    变式5-3.(2022·福建省安溪第一中学九年级阶段练习)如图,与相交于点,点在线段上,且.若,,.

    (1)求的值;
    (2)求的值.
    【答案】(1)
    (2)

    【分析】(1)根据,得,得,根据,,即可求出;
    (2)由(1)得,根据,得,得,即可求出.
    (1)

    ∴,

    ∴,即
    又∵且

    ∴.
    (2)

    ∴,


    ∵,

    故.
    【点睛】本题考查相似三角形的知识,熟练掌握相似三角形的判定及性质是解题的关键.
    考查题型六 相似三角形中动点问题
    典例6.如图,在Rt中,,,,点P从点A出发,以1cm/s的速度沿AB运动;同时,点Q从点B出发,以2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动时间为.当与相似时,的值是多少?

    【答案】的值是或
    【分析】分两种情况讨论,由相似三角形的性质,列出等式,即可求解.
    【详解】解:当△PBQ∽△ABC时,

    即,
    解得,
    经检验:是方程的解,
    当△PBQ∽△CBA时,

    即,
    解得,
    经检验:是方程的解,
    ∴的值是或.
    【点睛】本题考查了相似三角形的性质,利用分类讨论的思想解决问题是解题的关键.
    变式6-1.(2022·江苏·无锡市天一实验学校九年级阶段练习)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从点C出发,沿CA以3cm/s的速度向点A运动,当其中一点到达终点时,另一点也停止运动,设运动时间为xs.

    (1)当时,求x的值.
    (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.
    【答案】(1)
    (2)能,AP=cm或20cm

    【分析】(1)利用平行线分线段对应成比例,列比例式进行计算即可;
    (2)分类讨论:①△APQ∽△CQB,②当△APQ∽△CBQ,利用相似的性质,对应边对应成比例,列式计算即可.
    (1)
    解:当时,AP:AB=AQ:AC,
    ∵AP=4x,AQ=30-3x,
    ∴,
    解得:x=;
    (2)
    解:∵BA=BC
    ∴,
    ①当△APQ∽△CQB时,有,
    即:,
    解得:,
    ∴(cm),
    ②当△APQ∽△CBQ时,有,
    即:,
    解得:x=5或x=-10(舍去),
    ∴PA=4x=20(cm),
    综上所述,当AP=cm或20cm时,△APQ与△CQB相似.
    【点睛】本题考查了平行线分线段成比例,以及相似三角形的判定和性质.熟练掌握相关知识点是解题的关键.
    变式6-2.(2022·山东省济南燕山中学九年级阶段练习)如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,沿方向向点匀速运动,同时动点从B点出发,沿BA方向向点A匀速运动,P、Q两点的运动速度都是每秒1个单位,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为.
    问:当为何值时,以点A、P、Q为项点三角形与相似.

    【答案】当s或s时,以点A、P、Q为项点三角形与相似
    【分析】由题意可知,当或时,以点A、P、Q为项点三角形与相似,根据相似的性质,进行分情况讨论进行计算求t值,注意t的取值范围.
    【详解】解:若以点A、P、Q为项点三角形与相似,
    则在中,或,
    由题意可知,点A的坐标为(8,0),点B的坐标为(0,6),
    ∴OA=8,OB=6,AB=10,
    ∵运动时间为,
    ∴AP=BQ=t,
    则AQ=10-t,
    ①当时,

    则,
    ∴,
    解得:(符合题意);
    ②当,

    则,
    ∴,
    解得:(符合题意),
    综上所述,当s或s时,以点A、P、Q为项点三角形与相似.
    【点睛】本题主要考查的是相似与一次函数的综合,利用相似的性质求值是本题解题的重点,同时需注意分情况讨论.
    变式6-3.(2022·河南·南阳市实验学校九年级阶段练习)如图,在中,,,点P从点A出发,沿边以的速度向点B匀速运动;点Q从点B出发,沿边以的速度向点C匀速运动,如果P、Q同时出发,当Q点到达C点时,P点随之停止运动.当中有一个内角等于时,求运动时间t(s)的值.

    【答案】或
    【分析】过A点作,根据等腰三角形的性质得出,,然后分两种情况进行讨论即可得出答案.
    【详解】解:过A点作于点D,如图,

    ∵,
    ∴,,
    ∵,
    ∴当时,,则,即,解得;
    当时,,则,即,解得,
    综上所述,运动时间t的值为或.
    【点睛】本题主要考查了相似三角形的动点问题,解题的关键是作出辅助线,进行分类讨论.
    考查题型七 相似三角形的应用
    典例7.(2022·山东·济南育秀中学九年级阶段练习)如图所示,某测量工作人员头顶A与标杆顶点F、电视塔顶端E在同一直线上,已知此人眼睛距地面的长为,标杆的长为,且的长为,的长为,求电视塔的高.

    【答案】
    【分析】过点A作交于点G,交于点H,构造相似三角形.利用相似三角形对应边成比例解答即可.
    【详解】解:如图,过点A作交于点G,交于点H,

    根据题意得:,
    ∴,,,,
    ∴,
    ∴,即,
    解得:,
    ∴,
    答:电视塔的高为.
    【点睛】本题考查相似三角形的应用,关键是把实际问题抽象到相似三角形中,利用相似三角形的相似比列出方程,通过解方程求解即可.
    变式7-1.(2022·福建·泉州七中九年级阶段练习)古代一位数学家想出了一种测量金字塔高度的方法:如图所示,为了测量金字塔的高度,先竖一根已知长度的木棒,比较棒子的影长与金字塔的影长,即可近似算出金字塔的高度.如果,,,求金字塔的高度.

    【答案】金字塔的高度为米.
    【分析】根据太阳光是平行光线,得出,再利用相似三角形的性质求出即可.
    【详解】解:由于太阳光是平行光线, ∴,
    又∵,
    ∴,
    ∴而,,,
    ∴(米).
    答:金字塔的高度为米.
    【点睛】本题主要考查了相似三角形的判定与性质,根据已知得出,进而得出比例式是解题关键.
    变式7-2.(2022·山东·济南市天桥区泺口实验学校九年级阶段练习)如图,小明同学用自制的直角三角形DEF测量树的高度AB,他调整自己的位置,设斜边DF保持水平,并且边DE与点B在同一直线,DE=0.4m,EF=0.3m,测得边DF离地面高度AC=1.5m,CD=10m,求树高AB.

    【答案】AB=9m.
    【分析】先证得△DEF∽△DCB,可得,再根据DE=0.4m,EF=0.3m,CD=10m可得BC=7.5m,即可求解.
    【详解】解:∵∠DEF=∠DCB=90°,∠EDF=∠CDB
    ∴△DEF∽△DCB
    ∴=
    ∴=,
    ∴BC=7.5,
    ∴AB=AC+BC=9(m).
    【点睛】本题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题的关键.
    变式7-3.(2022·陕西师大附中九年级阶段练习)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图.小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在地上的影子高度,,(点A、E、C在同一直线上).已知小明的身高是1.7m.请你帮小明求出楼高.

    【答案】楼高AB为19.95(m)
    【分析】此题属于实际应用问题,解题的关键是将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的性质解题.
    【详解】解:过点D作DG⊥AB,分别交AB、EF于点G、H,

    ∵ABCD,DG⊥AB,AB⊥AC,
    ∴四边形ACDG是矩形,
    ∴EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,
    ∵EFAB,
    ∴,
    ∴,
    由题意,知FH=EF−EH=1.7−1.2=0.5,
    ∴,
    解得,BG=18.75(m),
    ∴AB=BG+AG=18.75+1.2=19.95(m).
    ∴楼高AB为19.95(m).
    【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.


    相关试卷

    第二十九章 投影与视图【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版): 这是一份第二十九章 投影与视图【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版),文件包含第二十九章投影与视图题型专练2022-2023学年人教版数学九年级下册单元综合复习解析版docx、第二十九章投影与视图题型专练2022-2023学年人教版数学九年级下册单元综合复习原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    第二十七章 相似【单元检测】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版): 这是一份第二十七章 相似【单元检测】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版),文件包含第二十七章相似单元检测解析版docx、第二十七章相似单元检测原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    第6章 图形的相似【题型专练】——2022-2023学年苏科版数学九年级下册单元综合复习(原卷版+解析版): 这是一份第6章 图形的相似【题型专练】——2022-2023学年苏科版数学九年级下册单元综合复习(原卷版+解析版),文件包含第6章图形的相似题型专练2022-2023学年苏科版数学九年级下册单元综合复习解析版docx、第6章图形的相似题型专练2022-2023学年苏科版数学九年级下册单元综合复习原卷版docx等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第二十七章 相似【题型专练】——2022-2023学年人教版数学九年级下册单元综合复习(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map